【題目】某校團委計劃在元且期間組織優(yōu)秀團員到敬老院去服務(wù),現(xiàn)選出了10名優(yōu)秀團員參加服務(wù),其中男生6人,女生4人.

若從這10人中隨機選一人當(dāng)隊長,求選中女生當(dāng)隊長的概率;

現(xiàn)決定從甲、乙中選一人當(dāng)隊長,他們準備以游戲的方式?jīng)Q定由誰擔(dān)任,游戲規(guī)則如下:將四張牌面數(shù)字分別為23,45的撲克牌洗勻后,數(shù)字朝下放于桌面,從中任取2張,若牌面數(shù)字之和為偶數(shù),則選甲為隊長;否則,選乙為隊長試問這個游戲公平嗎?請用樹狀圖或列表法說明理由.

【答案】;理由見解析.

【解析】

直接利用概率公式求出即可;

利用列表法表示出所有可能進而利用概率公式求出即可.

現(xiàn)有10人準備到敬老院去服務(wù),其中男生6人,女生4人,

從這10人中隨機選一人當(dāng)隊長,選到女生的概率為;

表格如下:

2

1

2

3

4

5

2

3

4

5

牌面數(shù)字之和的所有可能結(jié)果為:56,7,5,7,8,6,79,78,912種,

甲為隊長的概率為:,

乙為隊長的概率為:

因為,

所以游戲不公平.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個含30°角的直角三角形ABC和直角三角形BED如圖那樣拼接,C、B、D在同一直線上,ACBD,∠ABC=∠E30°,∠ACB=∠BDE90°,M為線段CB上一個動點(不與CB重合).過MMNAM,交直線BEN,過NNHBDH

1)當(dāng)M在什么位置時,AMC∽△NBH?

2)設(shè)AC

①若CM2,求BH的長;

②當(dāng)M沿線段CB運動時,連接AN(圖中未連),求AMN面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在研究利用木板余料裁出最大面積的矩形時發(fā)現(xiàn):如圖1,是一塊直角三角形形狀的木板余料,以為內(nèi)角裁一個矩形當(dāng)DE,EF是中位線時,所裁矩形的面積最大若木板余料的形狀改變,請你探究:

如圖2,現(xiàn)有一塊五邊形的木板余料ABCDE,,,現(xiàn)從中裁出一個以為內(nèi)角且面積最大的矩形,則該矩形的面積為______

如圖3,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測量,,,且,從中裁出頂點MN在邊BC上且面積最大的矩形PQMN,則該矩形的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C為⊙O外一點,連接OC交⊙O于點D,連接BD并延長交線段AC于點E,∠CDE=∠CAD

1)求證:CD2ACEC;

2)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;

3)若AEEC,求tanB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點A、B,若∠AOB=45°,則AOB的面積是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△中,∠,點邊上一點,以為直徑的⊙與邊相切于點,與邊交于點,過點于點,連接

(1)求證:;

(2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD中,ADBC,AD=CD,E是對角線BD上一點,且EA=EC.

(1)求證:四邊形ABCD是菱形;

(2)如果BE=BC,且CBE:BCE=2:3,求證:四邊形ABCD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知拋物線y=﹣x2+x+2x軸交于A、B兩點,與y軸交于C點,拋物線的頂點為Q,連接BC

1)求直線BC的解析式;

2)點P是直線BC上方拋物線上的一點,過點PPDBC于點D,在直線BC上有一動點M,當(dāng)線段PD最大時,求PM+MB最小值;

3)如圖②,直線AQy軸于G,取線段BC的中點K,連接OK,將GOK沿直線AQ平移得GO'K,將拋物線y=﹣x2+x+2沿直線AQ平移,記平移后的拋物線為y,當(dāng)拋物線y經(jīng)過點Q時,記頂點為Q,是否存在以G'、K'Q'為頂點的三角形是等腰三角形?若存在,求出點G的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大海中有AB兩個島嶼,為測量它們之間的距離,在海岸線PQ上點E處測得∠AEP60°,∠BEQ45°;在點F處測得∠AFP45°,∠BFQ90°,EF2km

1)判斷AB、AE的數(shù)量關(guān)系,并說明理由;

2)求兩個島嶼AB之間的距離(結(jié)果保留根號).

查看答案和解析>>

同步練習(xí)冊答案