【題目】如圖,在銳角△ABC中,AB=4 ,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是( ).
A.3
B.4
C.5
D.6
【答案】B
【解析】解答:如圖,在AC上截取AE=AN,連接BE.
∵∠BAC的平分線交BC于點D,
∴∠EAM=∠NAM,
在△AME與△AMN中, ,
∴△AME≌△AMN(SAS),
∴ME=MN.
∴BM+MN=BM+ME≥BE.
∵BM+MN有最小值.
當BE是點B到直線AC的距離時,BE⊥AC,
又AB=4 ,∠BAC=45°,此時,△ABE為等腰直角三角形,
∴BE=4,
即BE取最小值為4,
∴BM+MN的最小值是4.
所以答案是:B.
分析:從已知條件結(jié)合圖形認真思考,通過構(gòu)造全等三角形,利用三角形的三邊的關(guān)系確定線段和的最小值.
【考點精析】根據(jù)題目的已知條件,利用三角形的“三線”和軸對稱-最短路線問題的相關(guān)知識可以得到問題的答案,需要掌握1、三角形角平分線的三條角平分線交于一點(交點在三角形內(nèi)部,是三角形內(nèi)切圓的圓心,稱為內(nèi)心);2、三角形中線的三條中線線交于一點(交點在三角形內(nèi)部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點到對邊的距離;注意:三角形的中線和角平分線都在三角形內(nèi);已知起點結(jié)點,求最短路徑;與確定起點相反,已知終點結(jié)點,求最短路徑;已知起點和終點,求兩結(jié)點之間的最短路徑;求圖中所有最短路徑.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AD是△ABC的角平分線,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①直徑是弦;②平分弦的直徑垂直于弦:③長度相等的兩條弧是等。孩苋c確定一個圓⑤三角形的內(nèi)心是三角形三邊垂直平分線的交點,其中正確的命題有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點A、B的坐標分別為( 2,0 ),(4,0),點C的坐標為(m, m)(m為非負數(shù)),則CA+CB的最小值是( ).
A.6
B.
C.
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:
(1)九(1)班的學(xué)生人數(shù)為 ,并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中m= ,n= ,表示“足球”的扇形的圓心角是 度;
(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機選出2名學(xué)生參加學(xué)校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個多項式加上x2y-3xy2得2x2y-xy2,則這個多項式是( )
A. 3x2y-4xy2 B. x2y-4xy2 C. x2y+2xy2 D. -x2y-2xy2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從今年1月初起刻苦練習(xí)跳遠,每個月的跳遠成績都比上一個月有所增加,而且增加的距離相同.2月份,5月份他的跳遠成績分別為4.1m,4.7m.請你算出小明1月份的跳遠成績以及每個月增加的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了提升初中學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新精神,舉辦“玩轉(zhuǎn)數(shù)學(xué)”比賽.現(xiàn)有甲、乙、丙三個小組進入決賽,評委從研究報告、小組展示、答辯三個方面為個小組打,各項成績均按百分制記錄.甲、乙、丙三個小組各項得分如表:
(1)計算各小組的平均成績,并從高分到低分確定小組的排名順序;
(2)如果按照研究報告占40%,小組展示占30%,答辯占30%計算各小組的成績,哪個小組的成績最高?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com