【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對(duì)角線BD上一點(diǎn),且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.

【答案】
(1)證明:在△ADE與△CDE中,

,

∴△ADE≌△CDE,

∴∠ADE=∠CDE,

∵AD∥BC,

∴∠ADE=∠CBD,

∴∠CDE=∠CBD,

∴BC=CD,

∵AD=CD,

∴BC=AD,

∴四邊形ABCD為平行四邊形,

∵AD=CD,

∴四邊形ABCD是菱形


(2)證明:∵BE=BC

∴∠BCE=∠BEC,

∵∠CBE:∠BCE=2:3,

∴∠CBE=180× =45°,

∵四邊形ABCD是菱形,

∴∠ABE=45°,

∴∠ABC=90°,

∴四邊形ABCD是正方形


【解析】(1)首先證得△ADE≌△CDE,由全等三角形的性質(zhì)可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行線的判定定理可得四邊形ABCD為平行四邊形,由AD=CD可得四邊形ABCD是菱形;(2)由BE=BC可得△BEC為等腰三角形,可得∠BCE=∠BEC,利用三角形的內(nèi)角和定理可得∠CBE=180× =45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四邊形ABCD是正方形.
【考點(diǎn)精析】本題主要考查了正方形的判定方法的相關(guān)知識(shí)點(diǎn),需要掌握先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等;先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,對(duì)角線ACBD交于點(diǎn)O,下列各組條件,其中不能判定四邊形ABCD是平行四邊形的是( 。

A. OAOC,OBODB. OAOCABCD

C. ABCD,OAOCD. ADB=∠CBD,∠BAD=∠BCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一件工程甲獨(dú)做50天可完,乙獨(dú)做75天可完,現(xiàn)在兩個(gè)人合作,但是中途乙因事離開(kāi)幾天,從開(kāi)工后40天把這件工程做完,則乙中途離開(kāi)了(  )天.

A. 10 B. 20 C. 30 D. 25

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,點(diǎn)內(nèi)一點(diǎn).

1)如圖1,連接,將沿射線方向平移,得到,點(diǎn)的對(duì)應(yīng)點(diǎn)分別為點(diǎn),連接.如果,,則

2)如圖2,連接,當(dāng)時(shí),求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)新建了一棟7層的教學(xué)大樓,每層樓有8間教室,進(jìn)出這棟大樓共有八道門,其中四道正門大小相同,四道側(cè)門大小也相同.安全檢查中,對(duì)八道門進(jìn)行了測(cè)試:當(dāng)同時(shí)開(kāi)啟一道正門和兩道側(cè)門時(shí),2分內(nèi)可以通過(guò)560名學(xué)生;當(dāng)同時(shí)開(kāi)啟一道正門和一道側(cè)門時(shí),4分內(nèi)可以通過(guò)800名學(xué)生.

1)平均每分內(nèi)一道正門和一道側(cè)門分別可以通過(guò)多少名學(xué)生?

2)檢查中發(fā)現(xiàn),緊急情況時(shí)因?qū)W生擁擠,出門的效率將降低30%.安全檢查規(guī)定:在緊急情況下全大樓的學(xué)生應(yīng)在5分內(nèi)通過(guò)這八道門安全撤離,假設(shè)這棟教學(xué)大樓每間教室最多有45名學(xué)生,問(wèn)建造的這八道門是否符合安全規(guī)定?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+m (m為常數(shù))的圖像與x軸交于點(diǎn)A(-3,0),與y軸交于點(diǎn)C.以直線x=1為對(duì)稱軸的拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)經(jīng)過(guò)A、C兩點(diǎn),并與x軸的正半軸交于點(diǎn)B.

(1)求m的值及拋物線的函數(shù)表達(dá)式;
(2)若P是拋物線對(duì)稱軸上一動(dòng)點(diǎn),△ACP周長(zhǎng)最小時(shí),求出P的坐標(biāo);
(3)是否存在拋物在線一動(dòng)點(diǎn)Q,使得△ACQ是以AC為直角邊的直角三角形?若存在,求出點(diǎn)Q的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)在(2)的條件下過(guò)點(diǎn)P任意作一條與y軸不平行的直線交拋物線于M1(x1,y1),M2(x2,y2)兩點(diǎn),試問(wèn)是否為定值,如果是,請(qǐng)直接寫出結(jié)果,如果不是請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料I:

教材中我們學(xué)習(xí)了:若關(guān)于的一元二次方程的兩根為,根據(jù)這一性質(zhì),我們可以求出己知方程關(guān)于的代數(shù)式的值.

問(wèn)題解決:

1)已知為方程的兩根,則: __ _,__ _,那么_ (請(qǐng)你完成以上的填空)

閱讀材料:II

已知,且.求的值.

:可知

,即

是方程的兩根.

問(wèn)題解決:

2)若

3)已知.求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣ x2+ x+2與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C.

(1)試求A,B,C的坐標(biāo);
(2)將△ABC繞AB中點(diǎn)M旋轉(zhuǎn)180°,得到△BAD.
①求點(diǎn)D的坐標(biāo);
②判斷四邊形ADBC的形狀,并說(shuō)明理由;
(3)在該拋物線對(duì)稱軸上是否存在點(diǎn)P,使△BMP與△BAD相似?若存在,請(qǐng)直接寫出所有滿足條件的P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠新開(kāi)發(fā)生產(chǎn)一種機(jī)器,每臺(tái)機(jī)器成本y(萬(wàn)元)與生產(chǎn)數(shù)量x(臺(tái))之間滿足一次函數(shù)關(guān)系(其中10≤x≤70,且為整數(shù)),函數(shù)y與自變量x的部分對(duì)應(yīng)值如表

(單位:臺(tái))

10

20

30

(單位:萬(wàn)元/臺(tái))

60

55

50

1)求yx之間的函數(shù)關(guān)系式;

2)市場(chǎng)調(diào)查發(fā)現(xiàn),這種機(jī)器每月銷售量z(臺(tái))與售價(jià)a(萬(wàn)元/臺(tái))之間滿足如圖所示的函數(shù)關(guān)系.則當(dāng)該廠第一個(gè)月生產(chǎn)的這種機(jī)器40臺(tái)都按同一售價(jià)全部售出,請(qǐng)求出該廠第一個(gè)月銷售這種機(jī)器的總利潤(rùn).(注:利潤(rùn)=售價(jià)﹣成本)

查看答案和解析>>

同步練習(xí)冊(cè)答案