【題目】如圖,有一個(gè)池塘,其底面是邊長(zhǎng)為10尺的正方形,一個(gè)蘆葦AB生長(zhǎng)在它的中央,高出水面部分BC1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳?/span>B恰好碰到岸邊的B.則這根蘆葦?shù)拈L(zhǎng)度是( 。

A. 10 B. 11 C. 12 D. 13

【答案】D

【解析】

我們可以將其轉(zhuǎn)化為數(shù)學(xué)幾何圖形,可知邊長(zhǎng)為10尺的正方形,則B'C5尺,設(shè)出ABAB'x尺,表示出水深AC,根據(jù)勾股定理列出方程,求出的方程的解即可得到蘆葦?shù)拈L(zhǎng).

解:設(shè)蘆葦長(zhǎng)ABAB′=x尺,則水深AC=(x1)尺,

因?yàn)檫呴L(zhǎng)為10尺的正方形,所以B'C5

RtAB'C中,52+x12x2

解之得x13,

即蘆葦長(zhǎng)13尺.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市制米廠接到加工大米任務(wù),要求5天內(nèi)加工完220噸大米,制米廠安排甲、乙兩車間共同完成加工任務(wù),乙車間加工中途停工一段時(shí)間維修設(shè)備,然后改變加工效率繼續(xù)加工,直到與甲車間同時(shí)完成加工任務(wù)為止.設(shè)甲、乙兩車間各自加工大米數(shù)量y(噸)與甲車間加工時(shí)間s(天)之間的關(guān)系如圖(1)所示;未加工大米w(噸)與甲加工時(shí)間x(天)之間的關(guān)系如圖(2)所示,請(qǐng)結(jié)合圖象回答下列問(wèn)題:

(1)甲車間每天加工大米   噸,a=   

(2)求乙車間維修設(shè)備后,乙車間加工大米數(shù)量y(噸)與x(天)之間函數(shù)關(guān)系式.

(3)若55噸大米恰好裝滿一節(jié)車廂,那么加工多長(zhǎng)時(shí)間裝滿第一節(jié)車廂?再加工多長(zhǎng)時(shí)間恰好裝滿第二節(jié)車廂

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,AD是△ABC的角平分線,DE、DF分別是△ABD和△ACD的高。求證:AD垂直平分EF。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC,BAC=90°,AB=6,AC=8,P是斜邊BC上一動(dòng)點(diǎn),PEAB于點(diǎn)E,PFAC于點(diǎn)F,EFAP相交于點(diǎn)O,OF的最小值為 ( )

A. 4.8 B. 1.2

C. 3.6 D. 2.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y1=的圖象與一次函數(shù)y2=的圖象交于點(diǎn)A,B,點(diǎn)B的橫坐標(biāo)實(shí)數(shù)4,點(diǎn)P(1,m)在反比例函數(shù)y1=的圖象上.

(1)求反比例函數(shù)的表達(dá)式;

(2)觀察圖象回答:當(dāng)x為何范圍時(shí),y1>y2;

(3)求PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,ABAD,點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)B′恰好落在CD上,若∠BAD100°,則∠ACB的度數(shù)為( 。

A.40°B.45°C.60°D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠B30°,點(diǎn)DBC邊上,點(diǎn)EAC邊上,ADBDDECE,若△ADE為等腰三角形,則∠C的度數(shù)為_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊△ABC,延長(zhǎng)△ABC的各邊分別到點(diǎn)D、E、F使得AEBFCD,順次連接DE、F,求證:△DEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)你站在博物館的展覽廳中時(shí),你知道站在何處觀賞最理想嗎?如圖,設(shè)墻壁上的展品最高點(diǎn)P距地面2.5米,最低點(diǎn)Q距地面2米,觀賞者的眼睛F距地面1.6米,當(dāng)視角∠PEQ最大時(shí),站在此處觀賞最理想,則此時(shí)E到墻壁的距離為( )米.

A. 1 B. 0.6 C. 0.5 D. 0.4

查看答案和解析>>

同步練習(xí)冊(cè)答案