【題目】如圖所示,某地有一地下工程,其底面是正方形,面積為405m2,四個(gè)角是面積為5m2的小正方形滲水坑,根據(jù)這些條件如何求a的值?與你的同伴進(jìn)行交流.

下面是小康提供的解題方案,根據(jù)解題方案請(qǐng)你完成本題的解答過(guò)程:

①設(shè)大正方形的邊長(zhǎng)為x m,小正方形的邊長(zhǎng)為y m,那么根據(jù)題意可列出關(guān)于x的方程為_______,關(guān)于y的方程為_______

②利用平方根的意義,可求得x=________(取正值,結(jié)果保留根號(hào)),y=________(取正值,結(jié)果保留根號(hào));

③所以a=x-2y=______________________(結(jié)果保留根號(hào));

④答:________________________

【答案】①x2=405,y2=5;②9;;③9-2;7;④a的值為7.

【解析】

根據(jù)正方形的面積和算術(shù)平方根的概念求出兩個(gè)正方形的邊長(zhǎng),計(jì)算得到答案.

①設(shè)大正方形的邊長(zhǎng)為x m,小正方形的邊長(zhǎng)為y m,那么根據(jù)題意可列出關(guān)于x的方程為x2=405,關(guān)于y的方程為y2=5;

②利用平方根的意義,可求得x=9 (取正值,結(jié)果保留根號(hào)),y= (取正值,結(jié)果保留根號(hào));

③所以a=x-2y=9-2 (結(jié)果保留根號(hào));

④答:a的值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】元旦晚會(huì)上,王老師要為她的學(xué)生及班級(jí)的六位科任老師送上賀年卡,網(wǎng)上購(gòu)買賀年卡的優(yōu)惠條件是:購(gòu)買5050張以上享受團(tuán)購(gòu)價(jià).王老師發(fā)現(xiàn):零售價(jià)與團(tuán)購(gòu)價(jià)的比是5:4,王老師計(jì)算了一下,按計(jì)劃購(gòu)買賀年卡只能享受零售價(jià),如果比原計(jì)劃多購(gòu)買6張賀年卡就能享受團(tuán)購(gòu)價(jià),這樣她正好花了100元,而且比原計(jì)劃還節(jié)約10元錢;

(1)賀年卡的零售價(jià)是多少?

(2)班里有多少學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(π﹣3)0﹣(﹣1)2017+(﹣ 2+tan60°+| ﹣2|

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列判斷正確的是( )
A.“打開電視機(jī),正在播NBA籃球賽”是必然條件
B.“擲一枚硬幣正面朝上的概率是 ”表示每擲硬幣2次就必有1次反面朝上.
C.一組數(shù)據(jù)2,3,4,5,5,6的眾數(shù)和中位數(shù)都是5
D.若甲組數(shù)據(jù)的方差S2=0.24,乙組數(shù)據(jù)的方差S2=0.03,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:AB=AC,且AB⊥AC,DBC上,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,AOB是平角,OM、ON分別是AOCBOD 的平分線

1AOC=40°,BOD=60°,MON的度數(shù);

2COD=90°,求出MON的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)P為線段AB上的動(dòng)點(diǎn)(與A、B兩點(diǎn)不重合),在同一平面內(nèi),把線段AP、BP分別折成等邊△CDP和△EFP,且D、P、F三點(diǎn)共線,如圖所示.
(1)若DF=2,求AB的長(zhǎng);
(2)若AB=18時(shí),等邊△CDP和△EFP的面積之和是否有最大值,如果有最大值,求最大值及此時(shí)P點(diǎn)位置,若沒有最大值,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(1,1),B(4,3),將點(diǎn)A向左平移2個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度得到點(diǎn)C.

(1)寫出點(diǎn)C的坐標(biāo);

(2)畫出△ABC并判斷△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中點(diǎn),點(diǎn)P從B出發(fā),以a厘米/秒(a>0)的速度沿BA勻速向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q同時(shí)以1厘米/秒的速度從D出發(fā),沿DB勻速向點(diǎn)B運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒.
(1)若a=2,△BPQ∽△BDA,求t的值;
(2)設(shè)點(diǎn)M在AC上,四邊形PQCM為平行四邊形.
①若a= ,求PQ的長(zhǎng);
②是否存在實(shí)數(shù)a,使得點(diǎn)P在∠ACB的平分線上?若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案