【題目】小明在一次用頻率估計概率的實驗中,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,并繪制了如圖所示的統(tǒng)計圖,則符合這一結(jié)果的實驗可能是(

A.從分別寫著數(shù)字1,2,3的三個紙團中隨機抽取一個,抽中2的概率

B.擲一枚質(zhì)地均勻的骰子,向上的點數(shù)是偶數(shù)的概率

C.同時拋擲兩枚質(zhì)地均勻的硬幣,一枚正面向上、一枚反面向上的概率

D.從一副去掉大小王的撲克牌,任意抽取一張,抽到紅桃的概率

【答案】A

【解析】

根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.33附近波動,即其概率,計算四個選項的概率,約為0.33者即為正確答案.

解:A、分別寫著數(shù)字1,23的三個紙團中隨機抽取一個,抽中2的概率為≈0.33,故此選項符合題意;

B、擲一枚質(zhì)地均勻的骰子,向上的點數(shù)是偶數(shù)的概率為,故此選項不符合題意;

C、同時拋擲兩枚質(zhì)地均勻的硬幣,一枚正面向上、一枚反面向上的概率,故此選項不符合題意;

D、從一副去掉大小王的撲克牌,任意抽取一張,抽到紅桃的概率是,故此選項不符合題意.

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,ABBD,點EF分別是線段AB、AD上的動點(不與端點重合),且AEDF,BFDE相交于點G.給出如下幾個結(jié)論:①AED≌△DFB;②∠BGE大小會發(fā)生變化;③CG平分∠BGD;④若AF2DF,則BG6GF;.其中正確的結(jié)論有_____(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角三角形中,,點在邊上,且,點為邊上的任意一點(不與點,重合),把沿折疊,當(dāng)點的對應(yīng)點落在的邊上時,的長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】揚州漆器名揚天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關(guān)系,如圖所示.

(1)求之間的函數(shù)關(guān)系式;

(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=mx+n與雙曲線y=相交于A(1,2)B(2,b)兩點,與y軸相交于點C

1)求m,n的值;

2)若點D與點C關(guān)于x軸對稱,求ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一扇門ABCD,寬度AB1m,A到墻角E的距離AE0.5m,設(shè)EA,B在一條直線上,門打開后被與門所在墻面垂直的墻阻擋(EAEB′),邊BC靠在墻B'C'的位置.

1)求∠BAB'的度數(shù);

2)打開門后,門角上的點B在地面掃過的痕跡為弧BB',設(shè)弧BB'與兩墻角線圍成區(qū)域(如圖2)的面積為Sm2),求S的值(π≈3.14≈1.73,精確到0.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角ABC中,∠C90°,DBC的中點,將ABC折疊,使點A與點D重合,EF為折痕,則sinBED的值是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個單位后得到A1B1C1,請畫出A1B1C1;

(2)將ABC繞原點O逆時針旋轉(zhuǎn)90°后得到A2B2C2,請畫出A2B2C2

(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑AB垂直于弦CD,垂足為點E,過點CO 的切線,交AB的延長線于點P,聯(lián)結(jié)PD

1)判斷直線PDO的位置關(guān)系,并加以證明;

2)聯(lián)結(jié)CO并延長交O于點F,聯(lián)結(jié)FPCD于點G,如果CF=10,cosAPC=,求EG的長.

查看答案和解析>>

同步練習(xí)冊答案