如圖,兩同心圓的半徑分別長(zhǎng)2和4,大圓的弦AD交小圓于B、C兩點(diǎn),AB=BC=CD,則AB的長(zhǎng)為( )

A.3
B.2.5
C.
D.
【答案】分析:作OE⊥BC,連接OA、OC,根據(jù)勾股定理在兩個(gè)三角形中表示出OE,列出等式求解即可.
解答:解:過(guò)O作OE⊥BC于E,連接OA、OB,
設(shè)AB=BC=CD=2x,則AE=3x,BE=x,
在Rt△AEO中,OE==
在Rt△BEO中,OE==,
=,
解得:x=,
∴AB=2x=
故選D.
點(diǎn)評(píng):本題主要查垂徑定理,根據(jù)勾股定理列出方程是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,兩同心圓的圓心為O,大圓的弦AB切小圓于P,兩圓的半徑分別為2和1,則弦長(zhǎng)AB=
 
;若用陰影部分圍成一個(gè)圓錐,則該圓錐的底面半徑為
 
.(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,兩同心圓的半徑分別長(zhǎng)2和4,大圓的弦AD交小圓于B、C兩點(diǎn),AB=BC=CD,則AB的長(zhǎng)為( 。
A、3
B、2.5
C、
5
D、
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

作業(yè)寶如圖,兩同心圓的半徑分別長(zhǎng)2和4,大圓的弦AD交小圓于B、C兩點(diǎn),AB=BC=CD,則AB的長(zhǎng)為


  1. A.
    3
  2. B.
    2.5
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,兩同心圓的半徑長(zhǎng)分別為2和4,大圓的弦AD交小圓于B、C兩點(diǎn),且AB=BC=CD,則AB的長(zhǎng)等于(    )

 

A.3       B.2.5    C.     D.

查看答案和解析>>

同步練習(xí)冊(cè)答案