【題目】如圖,已知∠ABC=120°,BD 平分∠ABC,∠DAC=60°,若 AB=2,BC=3,則 BD=_____.
【答案】5
【解析】
在CB的延長(zhǎng)線上取點(diǎn)E,使BE=AB,連接AE,則可證得△ABE為等邊三角形,再結(jié)合條件可證明△ABD≌△AEC,可得BD=CE,再利用線段的和差可求得CE,則可求得BD.
在CB的延長(zhǎng)線上取點(diǎn)E,使BE=AB,連接AE,
∵∠ABC=120°,
∴∠ABE=180-∠ABC=60°,
∵BE=AB,
∴△ABE為等邊三角形,
∴AE=AB,∠BAE=∠E=60°,
∵∠DAC=60°,
∴∠DAC=BAE,
∵∠BAD=∠BAC+∠DAC,∠EAC=∠BAC+∠BAE,
∴∠BAD=∠EAC,
∵BD平分∠ABC,
∴∠ABD=∠ABC=60°,
∴∠ABD=∠E,
在△ABD和△AEC中,
,
∴△ABD≌△AEC(ASA),
∴BD=CE,
∵CE=BE+BC=AB+BC=3+2=5,
∴BD=5,
故答案為:5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:某社區(qū)超市第一次用6000元購(gòu)進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表:(注:獲利=售價(jià)-進(jìn)價(jià))
(1)該超市將第一次購(gòu)進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤(rùn)?
(2)該超市第二次以第一次的進(jìn)價(jià)又購(gòu)進(jìn)甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價(jià)銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤(rùn)比第一次獲得的總利潤(rùn)多180元,求第二次乙種商品是按原價(jià)打幾折銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系內(nèi),頂點(diǎn)的坐標(biāo)分別為A(﹣4,4),B(﹣2,5),C(﹣2,1).
(1)平移△ABC,使點(diǎn)C移到點(diǎn)C1(﹣2,﹣4),畫出平移后的△A1B1C1,并寫出點(diǎn)A1,B1的坐標(biāo);
(2)將△ABC繞點(diǎn)(0,3)旋轉(zhuǎn)180°,得到△A2B2C2,畫出旋轉(zhuǎn)后的△A2B2C2;
(3)求(2)中的點(diǎn)C旋轉(zhuǎn)到點(diǎn)C2時(shí),點(diǎn)C經(jīng)過(guò)的路徑長(zhǎng)(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC、BD相交于點(diǎn)O,AB=CD,AC=BD.求證:(1) ∠ABD=∠DCA;(2) AO=DO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設(shè),.
①如圖2,當(dāng)點(diǎn)在線段BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
②當(dāng)點(diǎn)在直線BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若 ( x 2 px )( x 2 3x q) 的積中不含 x 項(xiàng)與 x3 項(xiàng)
(1)求 p、q 的值;(2)求代數(shù)式(-2p2q)2+(3pq)-1+p2013q2014的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:,OB、OM、ON,是 內(nèi)的射線.
(1)如圖 1,若 OM 平分 , ON平分.當(dāng)射線OB 繞點(diǎn)O 在 內(nèi)旋轉(zhuǎn)時(shí),= 度.
(2)OC也是內(nèi)的射線,如圖2,若 ,OM平分,ON平分,當(dāng)射線OB繞點(diǎn)O在內(nèi)旋轉(zhuǎn)時(shí),求的大小.
(3)在(2)的條件下,當(dāng)射線OB從邊OA開(kāi)始繞O點(diǎn)以每秒的速度逆時(shí)針旋轉(zhuǎn)t秒,如圖3,若,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】1.概念學(xué)習(xí).已知,點(diǎn)為其內(nèi)部一點(diǎn),連接、、,在、、中,如果存在一個(gè)三角形,其內(nèi)角與的三個(gè)內(nèi)角分別相等,那么就稱點(diǎn)為的等角點(diǎn).
2.理解應(yīng)用
(1)判斷以下兩個(gè)命題是否為真今題,若為真令題,則在相應(yīng)橫線內(nèi)寫“真命題”;反之,則寫“假命題”.
①內(nèi)角分別為、、的三角形存在等角點(diǎn); ;
②任意的三角形都存在等角點(diǎn); ;
(2)如圖①,點(diǎn)是銳角的等角點(diǎn),若,探究圖①中,、、之間的數(shù)量關(guān)系,并說(shuō)明理由.
3.解決問(wèn)題
如圖②,在中,,若的三個(gè)內(nèi)角的角平分線的交點(diǎn)是該三角形的等角點(diǎn),求三角形三個(gè)內(nèi)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩種不同的數(shù)對(duì)處理器、.當(dāng)數(shù)對(duì)輸入處理器時(shí),輸出數(shù)對(duì),記作,,;但數(shù)對(duì)輸入處理器時(shí),輸出數(shù)對(duì),記作,,.
(1),( , ),,( , ).
(2)當(dāng),,時(shí),求,;
(3)對(duì)于數(shù)對(duì),,,一定成立嗎?若成立,說(shuō)明理由;若不成立,舉例說(shuō)明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com