【題目】如圖,為了測(cè)出某塔CD的高度,在塔前的平地上選擇一點(diǎn)A,用測(cè)角儀測(cè)得塔頂D的仰角為30°,在A、C之間選擇一點(diǎn)B(A、B、C三點(diǎn)在同一直線上).用測(cè)角儀測(cè)得塔頂D的仰角為75°,且AB間的距離為40m.
(1)求點(diǎn)B到AD的距離;
(2)求塔高CD(結(jié)果用根號(hào)表示).
【答案】(1)20m;(2)塔高CD為(10+10)m.
【解析】
試題分析:(1)過點(diǎn)B作BE⊥AD于點(diǎn)E,然后根據(jù)AB=40m,∠A=30°,可求得點(diǎn)B到AD的距離;
(2)先求出∠EBD的度數(shù),然后求出AD的長度,然后根據(jù)∠A=30°即可求出CD的高度.
解:(1)過點(diǎn)B作BE⊥AD于點(diǎn)E,
∵AB=40m,∠A=30°,
∴BE=AB=20m,AE==20m,
即點(diǎn)B到AD的距離為20m;
(2)在Rt△ABE中,
∵∠A=30°,
∴∠ABE=60°,
∵∠DBC=75°,
∴∠EBD=180°﹣60°﹣75°=45°,
∴DE=EB=20m,
則AD=AE+EB=20+20=20(+1)(m),
在Rt△ADC中,∠A=30°,
∴DC==(10+10)m.
答:塔高CD為(10+10)m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課題組為了解全市八年級(jí)學(xué)生對(duì)數(shù)學(xué)知識(shí)的掌握情況,在一次數(shù)學(xué)檢測(cè)中,從全市24000名八年級(jí)考生中隨機(jī)抽取部分學(xué)生的數(shù)學(xué)成績進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下圖表:
請(qǐng)根據(jù)以上圖表提供的信息,解答下列問題:
(1)表中和所表示的數(shù)分別為:= ,= ;
(2)請(qǐng)?jiān)趫D中,補(bǔ)全頻數(shù)分布直方圖;
(3)如果把成績?cè)?0分以上(含90分)定為優(yōu)秀,那么該市24000名八年級(jí)考生數(shù)學(xué)成績?yōu)閮?yōu)秀的學(xué)生約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了了解本校2 000名學(xué)生所需運(yùn)動(dòng)服尺碼,在全校范圍內(nèi)隨機(jī)抽取100名學(xué)生進(jìn)行調(diào)查,這次抽樣調(diào)查的樣本容量是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,邊長為3的正方形OABC的兩頂點(diǎn)A、C分別在y軸、x軸的正半軸上,點(diǎn)O在原點(diǎn).現(xiàn)將正方形OABC繞O點(diǎn)順時(shí)針旋轉(zhuǎn),當(dāng)A點(diǎn)第一次落在直線y=x上時(shí)停止旋轉(zhuǎn),旋轉(zhuǎn)過程中,AB邊交直線y=x于點(diǎn)M,BC邊交x軸于點(diǎn)N(如圖).在旋轉(zhuǎn)正方形OABC的過程中,△MBN的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形有一條直角邊為6,另兩條邊長是連續(xù)偶數(shù),則該三角形周長為( )
A.20
B.22
C.24
D.26
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將命題“等角的補(bǔ)角相等”寫成“如果……那么……”的形式:如果______________,那么_________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com