【題目】如圖,∠AOB=30°,點(diǎn)M、N分別在邊OA、OB上,且OM=1,ON=3,點(diǎn)P、Q分別在邊OB、OA上,則MP+PQ+QN的最小值是____________
【答案】
【解析】試題分析:本題考查了軸對(duì)稱--最短路徑問題,根據(jù)軸對(duì)稱的定義,找到相等的線段,得到等邊三角形是解題的關(guān)鍵.作M關(guān)于OB的對(duì)稱點(diǎn)M′,作N關(guān)于OA的對(duì)稱點(diǎn)N′,連接M′N′,即為MP+PQ+QN的最小值.
解:作M關(guān)于OB的對(duì)稱點(diǎn)M′,作N關(guān)于OA的對(duì)稱點(diǎn)N′,
連接M′N′,即為MP+PQ+QN的最小值.
根據(jù)軸對(duì)稱的定義可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,
∴△ONN′為等邊三角形,△OMM′為等邊三角形,
∴∠N′OM′=90°,
∴在Rt△M′ON′中,
M′N′==.
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A、B兩點(diǎn),與反比例函數(shù)y= 交于C、D兩點(diǎn).已知點(diǎn)C坐標(biāo)為(﹣4,﹣1),點(diǎn)D的橫坐標(biāo)為2.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)若點(diǎn)P為坐標(biāo)軸上一點(diǎn),且S△ACP=2S△ABO , 請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知分式A=.
(1) 化簡這個(gè)分式;
(2) 當(dāng)a>2時(shí),把分式A化簡結(jié)果的分子與分母同時(shí)加上3后得到分式B,問:分式B的值較原來分式A的值是變大了還是變小了?試說明理由.
(3) 若A的值是整數(shù),且a也為整數(shù),求出符合條件的所有a值的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合).以AD為邊作正方形ADEF,連接CF.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),求證:①BD⊥CF.②CF=BC﹣CD.
(2)如圖2,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),其它條件不變,請(qǐng)直接寫出CF、BC、CD三條線段之間的關(guān)系;
(3)如圖3,當(dāng)點(diǎn)D在線段BC的反向延長線上時(shí),且點(diǎn)A、F分別在直線BC的兩側(cè),其它條件不變:①請(qǐng)直接寫出CF、BC、CD三條線段之間的關(guān)系.②若連接正方形對(duì)角線AE、DF,交點(diǎn)為O,連接OC,探究△AOC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC=70°.
(1)AD與BC平行嗎?試寫出推理過程;
(2)求∠DAC和∠EAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班級(jí)從甲乙兩位同學(xué)中選派一人參加“秀美山河”知識(shí)競賽,老師對(duì)他們的五次模擬成績(單位:分)進(jìn)行了整理,美工計(jì)算出甲成績的平均數(shù)是80,甲乙成績的方差分別是320,40,但繪制的統(tǒng)計(jì)圖尚不完整.
甲乙兩人模擬成績統(tǒng)計(jì)表
根據(jù)以上信息,請(qǐng)你解答下列問題:
(1)a=;
(2)請(qǐng)完成圖中表示甲成績變化情況的折線;
(3)求乙成績的平均數(shù);
(4)從平均數(shù)和方差的角度分析,誰將被選中.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的面積是16,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)M1、N1、P1分別為線段OD、DC、CO的中點(diǎn),順次連接M1N1、N1 P1、P1M1得到第一個(gè)△P1M1N1 , 面積為S1 , 分別取M1N1、N1P1、P1M1三邊的中點(diǎn)P2、M2、N2 , 得到第二個(gè)△P2M2N2 , 面積記為S2 , 如此繼續(xù)下去得到第n個(gè)△PnMnNn , 面積記為Sn , 則Sn﹣Sn﹣1= . (用含n的代數(shù)式表示,n≥2,n為整數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com