【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸上,頂點(diǎn)B在第一象限,AB=1.將線段OA繞點(diǎn)O按逆時針方向旋轉(zhuǎn)60°得到線段OP,連接AP,反比例函數(shù)(k≠0)的圖象經(jīng)過P,B兩點(diǎn),則k的值為______________.
【答案】
【解析】
設(shè)點(diǎn)B的坐標(biāo)為(a,,1) ,可得OA=a,根據(jù)旋轉(zhuǎn)的性質(zhì)可得OA=PO,∠POA=60°,即可得△POA為等邊三角形;在等邊△POA中,OA=a,可求得P點(diǎn)的坐標(biāo)為(, );
根據(jù)反比例函數(shù)k的幾何意義可得=k,解方程求得a值,即可得k值.
設(shè)點(diǎn)B的坐標(biāo)為(a,,1) ,可得OA=a,
∵線段OA繞點(diǎn)O按逆時針方向旋轉(zhuǎn)60°得到線段OP,
∴OA=PO,∠POA=60°,
∴△POA為等邊三角形;
在等邊△POA中,OA=a,可求得P點(diǎn)的坐標(biāo)為(, );
∵反比例函數(shù)(k≠0)的圖象經(jīng)過P,B兩點(diǎn),
∴=k,
解得(舍去),.
∴k=.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+4x.
(1)寫出二次函數(shù)y=﹣x2+4x圖象的對稱軸;
(2)在給定的平面直角坐標(biāo)系中,畫出這個函數(shù)的圖象(列表、描點(diǎn)、連線);
(3)根據(jù)圖象,寫出當(dāng)y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠一種產(chǎn)品去年的產(chǎn)量是100萬件,計(jì)劃明年產(chǎn)量達(dá)到121萬件,假設(shè)去年到明年這種產(chǎn)品產(chǎn)量的年增長率相同。
(1)求去年到明年這種產(chǎn)品產(chǎn)量的年增長率;
(2)今年這種產(chǎn)品的產(chǎn)量應(yīng)達(dá)到多少萬件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點(diǎn)在相互平行的三條直線l1,l2,l3上,且l1,l2之間的距離為1,l2,l3之間的距離為2,則AC的長是( )
A. B. C. 5 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)(﹣2,y1)、(﹣1,y2)和(1,y3)分別在反比例函數(shù)y=﹣的圖象上,則下列判斷中正確的是( 。
A. y1<y2<y3 B. y3<y1<y2 C. y2<y3<y1 D. y3<y2<y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,點(diǎn)E,F分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系.
(1)思路梳理
將△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)至△ADG,使AB與AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即點(diǎn)F,D,G三點(diǎn)共線,易證△AFG≌△AFE,故EF,BE,DF之間的數(shù)量關(guān)系為__;
(2)類比引申
如圖2,在圖1的條件下,若點(diǎn)E,F由原來的位置分別變到四邊形ABCD的邊CB,DC延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D,E均在邊BC上,且∠DAE=45°,若BD=1,EC=2,直接寫出DE的長為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=x﹣2與兩坐標(biāo)軸分別交于點(diǎn)A,C,交y=(x>0)于點(diǎn)P,PQ⊥x軸于點(diǎn)Q,CQ=1.
(1)求反比例函數(shù)解析式;
(2)平行于y軸的直線x=m分別交y=x﹣2,y=(x>0)于點(diǎn)D,B(B在線段AP上方),若S△BOD=2,求m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求證:無論m取何值,原方程總有兩個不相等的實(shí)數(shù)根;
(2)若x1,x2是原方程的兩根,且|x1-x2|=2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】過矩形ABCD的對角線AC的中點(diǎn)O作EF⊥AC,交BC邊于點(diǎn)E,交AD邊于點(diǎn)F,分別連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=6,AC=10,EC=,求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com