【題目】如圖7,在四邊形ABCD中,AB=BC,∠ABC=60°,E是CD邊上一點(diǎn),連接BE,以BE為一邊作等邊三角形BEF.請用直尺在圖中連接一條線段,使圖中存在經(jīng)過旋轉(zhuǎn)可完全重合的兩個(gè)三角形,并說明這兩個(gè)三角形經(jīng)過什么樣的旋轉(zhuǎn)可重合.
【答案】見解析,將△CBE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,可與△ABF重合.
【解析】
根據(jù)△BEF是等邊三角形,可得∠EBF=60°=∠CBA,EB=FB,進(jìn)而得出∠CBE=∠ABF,再根據(jù)AB=BC,即可得到△BCE≌△BAF,進(jìn)而得出將△CBE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,可與△ABF重合.
如圖,連接AF.
將△CBE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,可與△ABF重合.
理由:
∵△BEF是等邊三角形,
∴∠EBF=60°=∠CBA,EB=FB,
∴∠CBE=∠ABF,
又∵AB=BC,
∴△BCE≌△BAF,
∴將△CBE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,可與△ABF重合.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)分別進(jìn)行6次射擊訓(xùn)練,訓(xùn)練成績(單位:環(huán))如下表
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六交 | |
甲 | 9 | 8 | 6 | 7 | 8 | 10 |
乙 | 8 | 7 | 9 | 7 | 8 | 8 |
對他們的訓(xùn)練成績作如下分析,其中說法正確的是( 。
A. 他們訓(xùn)練成績的平均數(shù)相同 B. 他們訓(xùn)練成績的中位數(shù)不同
C. 他們訓(xùn)練成績的眾數(shù)不同 D. 他們訓(xùn)練成績的方差不同
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙P的圓心是(2,a)(a >0),半徑是2,與y軸相切于點(diǎn)C,直線y=x被⊙P截得的弦AB的長為,則a的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+4與x軸、y軸分別交于點(diǎn)A、B,M是y軸上的點(diǎn)(不與點(diǎn)B重合),若將△ABM沿直線AM翻折,點(diǎn)B恰好落在x軸正半軸上,則點(diǎn)M的坐標(biāo)為( 。
A.(0,﹣4 )B.(0,﹣5 )C.(0,﹣6 )D.(0,﹣7 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店在節(jié)日期間開展優(yōu)惠促銷活動(dòng):凡購買原價(jià)超過200元的商品,超過200元的部分可以享受打折優(yōu)惠若購買商品的實(shí)際付款金額y(單位:元)與商品原價(jià)x(單位:元)之間的函數(shù)關(guān)系的a圖象如圖所示,則圖中a的值是( 。
A.300B.320C.340D.360
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l為正比例函數(shù)的圖象,點(diǎn)的坐標(biāo)為,過點(diǎn)作x軸的垂線交直線l于點(diǎn),以為邊作正方形;過點(diǎn)作直線l的垂線,垂足為,交x軸于點(diǎn),以為邊作正方形;過點(diǎn)作x軸的垂線,垂足為,交直線l于點(diǎn),以為邊作正方形;……按此規(guī)律操作下去,得到的正方形的面積是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn).一次函數(shù)的圖象與x軸交于點(diǎn),與y軸交于點(diǎn)B,與正比例函數(shù)的圖象交于點(diǎn).
(1)求一次函數(shù)的解析式;
(2)在x軸上尋找點(diǎn)P,使得為等腰三角形,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo);
(3)在直線AB上尋找點(diǎn)Q,使得,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動(dòng)點(diǎn)P從點(diǎn)A開始沿邊AB向終點(diǎn)B以每秒2個(gè)單位長度的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開始沿邊BC以每秒4個(gè)單位長度的速度向終點(diǎn)C移動(dòng),如果點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)出發(fā),那么△PBQ的面積S隨出發(fā)時(shí)間t(s)如何變化?寫出函數(shù)關(guān)系式及t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形ABCD中,AB=8,點(diǎn)G是對角線BD上一點(diǎn),CG交BA的延長線于點(diǎn)F.
(1)求證:CG2=GEGF;
(2)如果DG=GB,且AG⊥BF,求cos∠F.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com