【題目】如圖1,二次函數(shù)y=ax2+bx+3 經(jīng)過點(diǎn)A(3,0),G(﹣1,0)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)若點(diǎn)M時(shí)拋物線在第一象限圖象上的一點(diǎn),求△ABM面積的最大值;
(3)拋物線的對(duì)稱軸交x軸于點(diǎn)P,過點(diǎn)E(0, )作x軸的平行線,交AB于點(diǎn)F,是否存在著點(diǎn)Q,使得△FEQ∽△BEP?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
【答案】
(1)解:將A、G點(diǎn)坐標(biāo)代入函數(shù)解析式,得
,
解得 ,
拋物線的解析式為y=﹣ x2+2 x+3
(2)解:作ME⊥x軸交AB于E點(diǎn),如圖1
,
當(dāng)x=0時(shí),y=3 ,即B點(diǎn)坐標(biāo)為(0,3 )
直線AB的解析式為y=﹣ x+3 ,
設(shè)M(n,﹣ n2+2 n+3 ),E(n,﹣ n+3 ),
ME═﹣ n2+2 n+3 ﹣(﹣ n+3 )=﹣ n2+5 n,
S△ABM= MExA= (﹣ n2+5 n)×3=﹣ (n﹣ )2+ ,
當(dāng)n= 時(shí),△ABM面積的最大值是
(3)解:存在;理由如下:
OE= ,AP=2,OP=1,BE=3 ﹣ = ,
當(dāng)y= 時(shí),﹣ x+3 = ,解得x= ,即EF=
將△BEP繞點(diǎn)E順時(shí)針方向旋轉(zhuǎn)90°,得到△B'EC(如圖3),
∵OB⊥EF,
∴點(diǎn)B'在直線EF上,
∵C點(diǎn)橫坐標(biāo)絕對(duì)值等于EO長度,C點(diǎn)縱坐標(biāo)絕對(duì)值等于EO﹣PO長度,
∴C點(diǎn)坐標(biāo)為(﹣ , ﹣1),
過F作FQ∥B'C,交EC于點(diǎn)Q,
則△FEQ∽△B'EC,
由 = = = ,
可得Q的坐標(biāo)為(﹣ ,﹣ );
根據(jù)對(duì)稱性可得,Q關(guān)于直線EF的對(duì)稱點(diǎn)Q'(﹣ , )也符合條件.
【解析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)平行于y軸的直線上兩點(diǎn)間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得ME的長,根據(jù)三角形的面積,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案.(3)即可確定△BEP,根據(jù)相似三角形的判定定理即可求得點(diǎn)Q的坐標(biāo),解題時(shí)要注意答案的不唯一性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計(jì)算:﹣12018﹣|﹣2|÷;
(2)先化簡,再求值:6ab﹣[2(a2+ab﹣)﹣3(a2﹣2ab+b2)﹣1],其中a=﹣1,b=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮房間窗戶的窗簾如圖1所示,它是由兩個(gè)四分之一圓組成(半徑相同)
(1)用代數(shù)式表示窗戶能射進(jìn)陽光的面積是 .(結(jié)果保留π)
(2)當(dāng),b=1時(shí),求窗戶能射進(jìn)陽光的面積是多少?(取π≈3)
(3)小亮又設(shè)計(jì)了如圖2的窗簾(由一個(gè)半圓和兩個(gè)四分之一圓組成,半徑相同),請你幫他算一算此時(shí)窗戶能射進(jìn)陽光的面積是否更大?如果更大,那么大多少?(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在,某商場進(jìn)行促銷活動(dòng),出售一種優(yōu)惠購物卡(注:此卡只作為購物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場按標(biāo)價(jià)的8折購物.
(1)顧客購買多少元金額的商品時(shí),買卡與不買卡花錢相等?在什么情況下購物合算?
(2)小張要買一臺(tái)標(biāo)價(jià)為3500元的冰箱,如何購買合算?小張能節(jié)省多少元錢?
(3)小張按合算的方案,把這臺(tái)冰箱買下,如果紅旗商場還能盈利25%,這臺(tái)冰箱的進(jìn)價(jià)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠A=∠F,∠C=∠D,試說明BD∥CE.
解:因?yàn)椋骸?/span>A=∠F,
所以:_____//______,
理由是:____________,
所以:∠____+∠_____=180°,
理由是:_______________,
因?yàn)椋骸?/span>C=∠D,
所以∠D+∠DEC=180°,
理由是:_________________,
所以:______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家1至6月份的用水量統(tǒng)計(jì)如圖所示,關(guān)于這組數(shù)據(jù),下列說法錯(cuò)誤的是( ).
A、眾數(shù)是6噸 B、平均數(shù)是5噸 C、中位數(shù)是5噸 D、方差是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】元旦放假時(shí),小明一家三口一起乘小轎車去探望爺爺、奶奶和姥爺、姥姥.早上從家里出發(fā),向東走了5千米到超市買東西,然后又向東走了2.5千米到爺爺家,下午從爺爺家出發(fā)向西走了10千米到姥爺家,晚上返回家里.
(1)若以小明家為原點(diǎn),向東為正方向,用1個(gè)單位長度表示1千米,請將超市、爺爺家和姥爺家的位置在下面數(shù)軸上分別用點(diǎn)A、B、C表示出來;
(2)超市和姥爺家相距多少千米?
(3)若小轎車每千米耗油0.08升,求小明一家從出發(fā)到返回家,小轎車的耗油量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點(diǎn)D在AC上,CD=3厘米.點(diǎn)P、Q分別由A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P沿AC方向向點(diǎn)C勻速移動(dòng),速度為每秒k厘米,行完AC全程用時(shí)8秒;點(diǎn)Q沿CB方向向點(diǎn)B勻速移動(dòng),速度為每秒1厘米.設(shè)運(yùn)動(dòng)的時(shí)間為x秒(0<x<8),△DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.
(1)求y1與x的函數(shù)關(guān)系,并在圖2中畫出y1的圖象;
(2)如圖2,y2的圖象是拋物線的一部分,其頂點(diǎn)坐標(biāo)是(4,12),求點(diǎn)P的速度及AC的長;
(3)在圖2中,點(diǎn)G是x軸正半軸上一點(diǎn)0<OG<6,過G作EF垂直于x軸,分別交y1、y2的圖象于點(diǎn)E、F.
①說出線段EF的長在圖1中所表示的實(shí)際意義;
②當(dāng)0<x<6時(shí),求線段EF長的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com