【題目】如圖,AB為⊙O的直徑,點(diǎn)D是AB下方圓上的一點(diǎn),點(diǎn)C是優(yōu)弧AD的中點(diǎn),過點(diǎn)B作⊙O的切線BE交AC的延長線于點(diǎn)E,連接OC,OD,CB,BD.
(1)求證:BD∥OC;
(2)當(dāng)AB=6時(shí),完成填空:
①當(dāng)BE= 時(shí),四邊形ODBC是菱形;
②當(dāng)BE= 時(shí),S△BCE=S△ABC.
【答案】(1)見解析;(2)①; ②3
【解析】
(1)連接CD,根據(jù)圓的基本性質(zhì)可得AC=DC,然后證出≌,可得∠A=∠ODC,然后根據(jù)同弧所對(duì)的圓周角性質(zhì)可得∠A=∠CDB,再推出∠OCD=∠CDB即可證出結(jié)論;
(2)①根據(jù)切線的性質(zhì)可得∠ABE=90°,當(dāng)AB=6,BE=時(shí),利用銳角三角函數(shù)即可求出∠A,從而求出∠COB和∠ODB,根據(jù)等邊三角形的判定定理可證和都是等邊三角形,從而得出BC=OC=OD=BD,即可證出結(jié)論;
②根據(jù)切線的性質(zhì)可得∠ABE=90°,當(dāng)AB=6,BE=3時(shí),利用銳角三角函數(shù)即可求出tanA,從而得出,設(shè)BC=x,利用勾股定理求出BC和AC,再利用勾股定理即可求出CE,即可求出CE:AC,然后根據(jù)兩個(gè)三角形等高時(shí),面積比等于底之比即可得出結(jié)論.
(1)證明:連接CD,
∵點(diǎn)C為優(yōu)弧AD的中點(diǎn),
∴AC=DC.
又∵OA=OD,OC=OC,
∴≌,
∴∠A=∠ODC.
又∵∠A與∠CDB都為所對(duì)的圓周角,
∴∠A=∠CDB,
∴∠ODC=∠CDB.
∵OD=OC,
∴∠ODC=∠OCD,
∴∠OCD=∠CDB
∴BD∥OC.
(2)解:①當(dāng)BE=時(shí),四邊形ODBC是菱形,理由如下
∵BE為⊙O的切線
∴∠ABE=90°
當(dāng)AB=6,BE=時(shí),
∴tanA=
∴∠A=30°
∴∠COB=2∠A=60°,∠ODB=∠ODC+∠CDB=2∠A=60°
∵OC =OB=OD
∴和都是等邊三角形
∴BC=OC=OD=BD
∴四邊形ODBC是菱形
故答案為:;
②當(dāng)BE=3時(shí),S△BCE=S△ABC,理由如下
∵BE為⊙O的切線
∴∠ABE=90°
當(dāng)AB=6,BE=3時(shí),
∴tanA=
∵AB為直徑
∴∠ACB=90°
∴tanA=
設(shè)BC=x,則AC=2x
∴BC2+AC2=AB2
即x2+(2x)2=62
解得:x=或(不符合實(shí)際,舍去)
∴BC=,AC=
在Rt△BCE中,CE=
∴CE:AC=:=1:4
∴S△BCE:S△ABC=1:4
∴S△BCE=S△ABC.
故答案為:3 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種產(chǎn)品,3月份的產(chǎn)量為5000件,4月份的產(chǎn)量為10000件.用簡單隨機(jī)抽樣的方法分別抽取這兩個(gè)月生產(chǎn)的該產(chǎn)品若干件進(jìn)行檢測,并將檢測結(jié)果分別繪制成如圖所示的扇形統(tǒng)計(jì)圖和頻數(shù)直方圖(每組不含前一個(gè)邊界值,含后一個(gè)邊界值).已知檢測綜合得分大于70分的產(chǎn)品為合格產(chǎn)品.
(1)求4月份生產(chǎn)的該產(chǎn)品抽樣檢測的合格率;
(2)在3月份和4月份生產(chǎn)的產(chǎn)品中,估計(jì)哪個(gè)月的不合格件數(shù)最多?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形ABCD的頂點(diǎn)B在x軸的正半軸上,點(diǎn)A坐標(biāo)為(-4,0),點(diǎn)D的坐標(biāo)為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過點(diǎn)C,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),y隨x的增大而增大,且-2≤x≤1時(shí),y的最大值為9,則a的值為
A. 1或 B. -或 C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),直線l的解析式為y=-x+b,且與x軸,y軸分別交于點(diǎn)A、B.平行于直線l的直線m從原點(diǎn)O出發(fā),沿x軸的正方向以每秒1個(gè)單位長度的速度運(yùn)動(dòng),與x軸,y軸分別交于點(diǎn)C,D,運(yùn)動(dòng)時(shí)間為t秒(0≤t≤b),將△OCD沿著直線m翻折得到△ECD.若△ECD和△OAB的重合部分的面積為S(設(shè)t=0或b時(shí),S=0),且S與t之間的函數(shù)關(guān)系的圖象如圖(2)所示,則圖象中的最高點(diǎn)P的坐標(biāo)是( )
A.(,3)B.(3,3)C.(,)D.(3,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情防控,我們一直在堅(jiān)守.某居委會(huì)組織兩個(gè)檢查組,分別對(duì)“居民體溫”和“居民安全出行”的情況進(jìn)行抽查.若這兩個(gè)檢查組在轄區(qū)內(nèi)的某三個(gè)校區(qū)中各自隨機(jī)抽取一個(gè)小區(qū)進(jìn)行檢查,則他們恰好抽到同一個(gè)小區(qū)的概率是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形邊長為的網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上,是以為圓心,為半徑的一段圓弧,請(qǐng)用無刻度的直尺畫圖(保留連線痕跡).
(1)的長為 ;
(2)將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為() ,連接.
①如圖 1,若是的中點(diǎn),請(qǐng)?jiān)诰W(wǎng)格中畫出,使;
②如圖 2,連接,請(qǐng)?jiān)诰W(wǎng)格中畫出點(diǎn),使的值最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=,在邊CD上有一點(diǎn)E,使EB平分∠AEC.若P為BC邊上一點(diǎn),且BP=2CP,連接EP并延長交AB的延長線于F.給出以下五個(gè)結(jié)論:
①點(diǎn)B平分線段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.
其中正確結(jié)論的序號(hào)是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知ABCD的對(duì)角線AC,BD交于點(diǎn)O,DE平分∠ADC交BC于點(diǎn)E,交AC與點(diǎn)F,且∠BCD=60°,BC=2CD,連接OE,則下列結(jié)論:①OE∥AB ②SABCD=BD·CD ③AO=2BO ④S△DOF=2S△EOF,其中成立的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com