【題目】已知,在等腰△ABC中,AB=AC,AD⊥BC于點D,以AC為邊作等邊△ACE,直線BE交直線AD于點F.如圖,60°≤∠BAC≤120°,△ACF與△ABC在直線AC的同側.
(1)①補全圖形;
②∠EAF+∠CEF= ;
(2)猜想線段FA,FB,FE的數(shù)量關系,并證明你的結論;
(3)若BC=2,則AF的最大值為 .
【答案】(1)①圖形如圖 1 所示;②結論:∠EAF+∠CEF=60°,理由見解析;(2)結論:FA=FE+FB.理由見解析;(3)AF 的最大值為.
【解析】
(1)①根據(jù)要求畫出圖形,如圖1所示;
②結論:∠EAF+∠CEF=60°如圖1中,以A為圓心,AB為半徑畫圓.作AH⊥BE于H.首先證明∠EBC=∠FAH=30°,根據(jù)三角形的內(nèi)角和定理和外角的性質即可解決問題;
(2)結論:FA=FE+FB.如圖2中,在FA上取一點K,使得FK=FE,連接EK.只要證明△AEK≌△CEF(SAS),即可解決問題;
(3)因為60°≤∠BAC≤120°,所以觀察圖象可知,當∠BAC=60°時,AF的值最大,求出AD,DF即可解決問題;
(1)①圖形如圖 1 所示;
②結論:∠EAF+∠CEF=60°
理由:如圖 1 中,以 A 為圓心,AB 為半徑畫圓.作 AH⊥BE 于 H.
∵AB=AC=AE,
∴B,E,C 在⊙A 上,
∵△AEC 是等邊三角形,
∴∠EAC=60°,
∴∠EBC=EAC=30°,
∵AB=AE,AH⊥BE,
∴∠EAH= ∠BAE,
∵∠BCE= ∠BAE,
∴∠BCE=∠EAH,
∴AD⊥BC,
∴∠BDF=∠AHF=90°,∠BFD=60°,
∴∠HAF=30°,
∴∠EAF+∠CEF=∠EAF+∠EBC+∠BCE=∠EAF+∠EAH+∠EBC=30°+30°=60°.
(2)結論:FA=FE+FB.
理由:如圖 2 中,在 FA 上取一點 K,使得 FK=FE,連接 EK.
∵FE=CK,∠EFK=60°,
∴△EFK 是等邊三角形,
∴EK=EF,∠EKF=∠KEF=60°,
∵∠AEC=∠KEF=60°,
∴∠AEK=∠CEF,
∵AE=EC,EK=EF,
∴△AEK≌△CEF(SAS),
∴AK=FC,
∵AD 垂直平分線段 BC,
∴FB=CF,
∴FA=FK+AK=FE+FC=FE+FB.
如圖 3 中.
∵60°≤∠BAC≤120°,
觀察圖象可知,當∠BAC=60°時,AF 的值最大, 此時∵AB=AC=BC=2,AF⊥BC,
∴AD=ABsin60°=,DF=BDtan30°= ,
∴AF=+= ,
∴AF 的最大值為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的內(nèi)心,將△ABC繞原點逆時針旋轉90°后,I的對應點I′的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,半圓O的直徑DE=10cm,△ABC中,∠ACB=90°,∠ABC=30°,BC=10cm,半圓O以1cm/s的速度從右到左運動,在運動過程中,D、E點始終在直線BC上,設運動時間為t(s),當t=0(s)時,半圓O在△ABC的右側,OC=6cm,那么,當t為_____s時,△ABC的一邊所在直線與半圓O所在的圓相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(1,0)
(1)在圖l中畫出△ABC關于x軸對稱的△A1B1C1;
(2)在圖2中,以點O為位似中心,將△ABC放大,使放大后的△A2B2C2與△ABC的對應邊的比為2:1(畫出一種即可). 直接寫出點A的對應點A2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是雙曲線y=(x>0)上的一動點,過A作AC⊥y軸,垂足為點C,作AC的垂直平分線交雙曲線于點B,交x軸于點D.當點A在雙曲線上從左到右運動時,對四邊形ABCD的面積的變化情況,小明列舉了四種可能:
①逐漸變;
②由大變小再由小變大;
③由小變大再由大變小;
④不變.
你認為正確的是_____.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=(k≠0)的圖象經(jīng)過點A(﹣2,m),過點A作AB⊥x軸于點B,且△AOB的面積為4.
(Ⅰ)求k和m的值;
(Ⅱ)設C(x,y)是該反比例函數(shù)圖象上一點,當1≤x≤4時,求函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為美化環(huán)境,某校計劃在一塊長為60米,寬為40米的長方形空地上修建一個長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設通道寬為a米.
(1)當a=10米時,花圃的面積=
(2)通道的面積與花圃的面積之比能否恰好等于3:5,如果可以,求出此時通道的寬.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=(k≠0)的圖象經(jīng)過點A(﹣2,m),過點A作AB⊥x軸于點B,且△AOB的面積為4.
(Ⅰ)求k和m的值;
(Ⅱ)設C(x,y)是該反比例函數(shù)圖象上一點,當1≤x≤4時,求函數(shù)值y的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com