【題目】將一矩形紙片OABC放在直角坐標系中,O為原點,C在x軸上,OA=6,OC=10.
(1)如圖1,在OA上取一點E,將△EOC沿EC折疊,使O點落在AB邊上的D點,求E點的坐標;
(2)如圖2,在OA、OC邊上選取適當?shù)狞cE′、F,將△E′OF沿E′F折疊,使O點落在AB邊上的D′點,過D′作D′G⊥C′O交E′F于T點,交OC′于G點,T坐標為(3,m),求m.
【答案】(1)E點的坐標為(0,);(2)m=.
【解析】
(1)先根據(jù)折疊的性質得出DC=OC=10,在Rt△BCD中,運用矩形的性質及勾股定理得出BD=8,然后在Rt△AED中,由勾股定理得OE2=22+(6-OE)2,解方程求出OE的長,進而求出點E的坐標;(2)先由折疊的性質得出∠D′E′F=∠OE′F,由平行線的性質得出∠OE′F=∠D′TE′,則∠D′E′F=∠D′TE′,根據(jù)等角對等邊得到D′T=D′E′=OE′,則TG=AE′,根據(jù)勾股定理列方程即可方法結論.
解:(1)如圖,
∵將△EOC沿EC折疊,使O點落在AB邊上的D點,
∴DC=OC=10.
在Rt△BCD中,
∵∠B=90°,BC=OA=6,DC=10,
∴BD=
在Rt△AED中,
∵∠DAE=90°,AD=2,DE=OE,AE=6﹣OE,
∴DE2=AD2+AE2,即OE2=22+(6﹣OE)2,
解得 OE=,
∴E點的坐標為(0,);
(2)如圖,
∵將△E′OF沿E′F折疊,使O點落在AB邊上D′點,
∴∠D′E′F=∠OE′F,D′E′=OE′,
∵D′G∥AO,
∴∠OE′F=∠D′TE′,
∴∠D′E′F=∠D′TE′,
∴D′T=D′E′=OE′,
∴TG=AE′;
∵T坐標為(3,m),
∴AD′=OG=3,TG=AE′=m,
∴D′E′=6﹣m,
∵AE′2+AD′2=D′E′2,
∴m2+32=(6﹣m)2,
解得:m=.
科目:初中數(shù)學 來源: 題型:
【題目】今年4月18日﹣4月20日,第29屆重慶市青少年科技創(chuàng)新大賽在重慶南開中學舉行,該校學生會在賽后對某年級各班的志愿者人數(shù)進行了統(tǒng)計,各班志愿者人數(shù)有6名、5名、4名、3名、2名、1名共計六種情況,并制成兩幅不完整的統(tǒng)計圖如下:
(1)該年級共有 個班級,并將條形圖補充完整;
(2)求平均每班有多少名志愿者;
(3)為了了解志愿者在這次活動中的感受,校學生會準備從只有2名志愿者的班級中任選兩名志愿者參加座談會,請用列表或畫樹狀圖的方法,求出所選志愿者來自同一個班級的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在和中,,還需再添加兩個條件才能使,則不能添加的一組條件是( )
A. AC=DE,∠C=∠EB. BD=AB,AC=DE
C. AB=DB,∠A=∠DD. ∠C=∠E,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究:如圖,分別以△ABC的兩邊AB和AC為邊向外作正方形ABMN和正方形ACDE,CN、BE交于點P. 求證:∠ANC = ∠ABE.
應用:Q是線段BC的中點,連結PQ. 若BC = 6,則PQ = ___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C的坐標分別為(9,0),(0,3),OD=5,點P在BC(不與點B、C重合)上運動,當△OPD為等腰三角形時,點P的坐標為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,將矩形ABCD沿直線AE折疊,頂點D正好落在BC邊上F點處,已知CE=3cm, AB=8cm,則圖中AD長為______________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,如果四邊形ABCD滿足AB=AD,CB=CD,∠B=∠D=90°,那么我們把這樣的四邊形叫做“完美箏形”.
將一張如圖①所示的“完美箏形”紙片ABCD先折疊成如圖②所示形狀,再展開得到圖③,其中CE,CF為折痕,∠BCE=∠ECF=∠FCD,點B′為點B的對應點,點D′為點D的對應點,連接EB',FD′相交于點O.
簡單應用:
(1)在平行四邊形、矩形、菱形、正方形四種圖形中,一定為“完美箏形”的是__________________.
(2)請你結合圖1寫出一條完美箏形的性質_______________.
(3)當圖3中的∠BCD=120°時,∠AEB′=_________________.
(4)當圖2中的四邊形AECF為菱形時,對應圖③中的“完美箏形”有__________________________(寫出箏形的名稱:例 箏形ABCD).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx+b與x軸、y軸分別交于點A,B,且OA,OB的長(OA>OB)是方程x2-10x+24=0的兩個根,P(m,n)是第一象限內直線y=kx+b上的一個動點(點P不與點A,B重合).
(1)求直線AB的解析式.
(2)C是x軸上一點,且OC=2,求△ACP的面積S與m之間的函數(shù)關系式;
(3)在x軸上是否有在點Q,使以A,B,Q為頂點的三角形是等腰三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com