【題目】基本事實(shí):兩角及其夾邊分別相等的兩個(gè)三角形全等(簡(jiǎn)稱).請(qǐng)你在此基礎(chǔ)上解決下面問題:

(1)敘述三角形全等的判定方法中的;

(2)證明.要求:敘述要用文字表達(dá);用圖形中的符號(hào)表達(dá)已知、求證,并證明,證明時(shí)各步驟要注明依據(jù).

【答案】(1)兩角及其中一角的對(duì)邊分別對(duì)應(yīng)相等的兩個(gè)三角形全等.;(2)詳見解析.

【解析】

1)兩角及其中一角的對(duì)邊分別對(duì)應(yīng)相等的兩個(gè)三角形全等.

2)根據(jù)三角形內(nèi)角和定理和全等三角形的判斷定理ASA來證明.

(1)三角形全等的判定方法中的推論AAS指的是:兩角及其中一角的對(duì)邊分別對(duì)應(yīng)相等的兩個(gè)三角形全等.

(2)已知:,.

求證:.

證明:如圖,在,

(已知),

(等量代換).

(三角形內(nèi)角和定理),

,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(基礎(chǔ)運(yùn)用)

如圖①所示,直線Ly=x+5x軸負(fù)半軸,y軸正半軸分別交于A、B兩點(diǎn).

1)點(diǎn)A坐標(biāo)為 SOAB= ;

2)如圖②所示,設(shè)QAB延長(zhǎng)線上一點(diǎn),作直線OQ,過A、B兩點(diǎn)分別作AMOQM,BNOQN,①求證:△AOM≌△OBN;②若AM=4,求MN的長(zhǎng);

(思維延伸)直線Ly=mx+5mx軸負(fù)半軸,y軸正半軸分別交于AB兩點(diǎn).

3)當(dāng)m取不同的值時(shí),點(diǎn)By軸正半軸上運(yùn)動(dòng),分別以OB、AB為邊,點(diǎn)B為直角頂點(diǎn)在第 一、二象限內(nèi)作等腰直角△OBF和等腰直角△ABE,連EFy軸于P點(diǎn),如圖③.問:當(dāng)點(diǎn)By軸正半軸上運(yùn)動(dòng)時(shí),試猜想線段PE與線段PF的數(shù)量關(guān)系并證明;

4)如圖③,當(dāng)m取不同的值時(shí),點(diǎn)By軸正半軸上運(yùn)動(dòng),以AB為邊在第二象限作等腰直角△ABE,則動(dòng)點(diǎn)E在直線 上運(yùn)動(dòng).(直接寫出直線的表達(dá)式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點(diǎn),且滿足∠BAC=∠APC=60°,

(1)求證:△ABC是等邊三角形;

(2)求圓心O到BC的距離OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象過點(diǎn)A(3,0),對(duì)稱軸為直線x=1,給出以下結(jié)論:①abc0;b2﹣4ac0;a+b+cax2+bx+c;④若M(x2+1,y1)、N(x2+2,y2)為函數(shù)圖象上的兩點(diǎn),則y1y2,其中正確的是( 。

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過小明還有一個(gè)求助沒有用(使用求助可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

(1)如果小明第一題不使用求助,那么小明答對(duì)第一道題的概率是  

(2)如果小明將求助留在第二題使用,請(qǐng)用樹狀圖或者列表來分析小明順利通關(guān)的概率.

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+bx+cx軸交于A(﹣3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求該拋物線的解析式;

(2)在拋物線上求一點(diǎn)P,使SPAB=SABC,寫出P點(diǎn)的坐標(biāo);

(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QBC的周長(zhǎng)最。咳舸嬖,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,以點(diǎn)A為圓心,小于AC的長(zhǎng)為半徑作圓弧,分別交AB,ACE,F(xiàn)兩點(diǎn),再分別以E,F(xiàn)為圓心,以大于EF長(zhǎng)為半徑作圓弧,兩條弧交于點(diǎn)G,作射線AGCD于點(diǎn)H,若∠C=120°,則∠AHD=(  )

A. 120° B. 30° C. 150° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx經(jīng)過點(diǎn)A(2,4)和點(diǎn)B(6,0).

(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的解析式;

(2)直接寫出它的開口方向、頂點(diǎn)坐標(biāo);

(3)點(diǎn)(x1,y1),(x2,y2)均在此拋物線上,若x1>x2>4,則y1 ________ y2(填“>”“=”或“<”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CABBC于點(diǎn)D,DE⊥AB,垂足為E,且AB=6cm,則△DEB的周長(zhǎng)為( )

A. 4cm B. 6cm C. 8cm D. 10cm

查看答案和解析>>

同步練習(xí)冊(cè)答案