【題目】如圖,把長(zhǎng)方形紙片ABCD沿EF折疊后.點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′的位置上.若∠1=60°,AE=1.
(1)求∠2、∠3的度數(shù);
(2)求長(zhǎng)方形紙片ABCD的面積S.
【答案】(1)60°,60°;(2)3
【解析】試題分析:(1)根據(jù)AD∥BC,∠1與∠2是內(nèi)錯(cuò)角,因而就可以求得∠2,根據(jù)圖形的折疊的定義,可以得到∠4=∠2,進(jìn)而可以求得∠3的度數(shù);
(2)已知AE=1,在Rt△ABE中,根據(jù)三角函數(shù)就可以求出AB、BE的長(zhǎng),BE=DE,則可以求出AD的長(zhǎng),就可以得到矩形的面積.
解:(1)∵AD∥BC,
∴∠2=∠1=60°;
又∵∠4=∠2=60°,
∴∠3=180°﹣60°﹣60°=60°.
(2)在直角△ABE中,由(1)知∠3=60°,
∴∠5=90°﹣60°=30°;
∴BE=2AE=2,
∴AB==;
∴AD=AE+DE=AE+BE=1+2=3,
∴長(zhǎng)方形紙片ABCD的面積S為:ABAD=×3=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)點(diǎn)A從原點(diǎn)出發(fā)向數(shù)軸負(fù)方向運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)B也從原點(diǎn)出發(fā)向數(shù)軸正方向運(yùn)動(dòng),運(yùn)動(dòng)到3秒鐘時(shí),兩點(diǎn)相距15個(gè)單位長(zhǎng)度.已知?jiǎng)狱c(diǎn)A、B的運(yùn)動(dòng)速度比之是3:2(速度單位:1個(gè)單位長(zhǎng)度/秒).
(1)求兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)的速度;
(2)A、B兩點(diǎn)運(yùn)動(dòng)到3秒時(shí)停止運(yùn)動(dòng),請(qǐng)?jiān)跀?shù)軸上標(biāo)出此時(shí)A、B兩點(diǎn)的位置;
(3)若A、B兩點(diǎn)分別從(2)中標(biāo)出的位置再次同時(shí)開(kāi)始在數(shù)軸上運(yùn)動(dòng),運(yùn)動(dòng)的速度不變,運(yùn)動(dòng)的方向不限,問(wèn):經(jīng)過(guò)幾秒鐘,A、B兩點(diǎn)之間相距4個(gè)單位長(zhǎng)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直角三角形ABC中,∠ACB=90°,E為AB上一點(diǎn),且CE=EB,ED⊥CB于D,則下列結(jié)論中不一定成立的是( )
A.AE=BEB.CE=ABC.∠CEB=2∠AD.AC=AB
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列關(guān)于的方程,哪些是整式方程?這些整式方程分別是一元幾次方程?
(1)
(2)
(3)
(4)
(5)
(6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】24點(diǎn)游戲是一種使用撲克牌來(lái)進(jìn)行的益智類(lèi)游戲,游戲內(nèi)容是:從一副撲克牌中抽去大小王剩下52張,任意抽取4張牌,把牌面上的數(shù)運(yùn)用你所學(xué)過(guò)的運(yùn)算得出24.每張牌都必須使用一次,但不能重復(fù)使用.
(1)在玩“24點(diǎn)”游戲時(shí),小明抽到以下4張牌:
請(qǐng)你幫他寫(xiě)出運(yùn)算結(jié)果為24的算式:(寫(xiě)出2個(gè))
_______________________; _______________________;
(2)如果.表示正,.表示負(fù),請(qǐng)你用(1)中的4張牌表示的數(shù)寫(xiě)出運(yùn)算結(jié)果為24的算式(寫(xiě)出2個(gè)):
__________________________; __________________________;
(3)如果小明抽到以下4張牌:
請(qǐng)你用這4張牌表示的數(shù)寫(xiě)出運(yùn)算結(jié)果為24的一個(gè)算式:
__________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線(xiàn)y=x2﹣x﹣3與x軸交于A和B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D
(1)求出點(diǎn)A,B,D的坐標(biāo);
(2)如圖1,若線(xiàn)段OB在x軸上移動(dòng),且點(diǎn)O,B移動(dòng)后的對(duì)應(yīng)點(diǎn)為O′,B′.首尾順次連接點(diǎn)O′、B′、D、C構(gòu)成四邊形O′B′DC,請(qǐng)求出四邊形O′B′DC的周長(zhǎng)最小值.
(3)如圖2,若點(diǎn)M是拋物線(xiàn)上一點(diǎn),點(diǎn)N在y軸上,連接CM、MN.當(dāng)△CMN是以MN為直角邊的等腰直角三角形時(shí),直接寫(xiě)出點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(x,y)和Q(x,y′),給出如下定義:若,則稱(chēng)點(diǎn)Q為點(diǎn)P的“可控變點(diǎn)”.
例如:點(diǎn)(1,2)的“可控變點(diǎn)”為點(diǎn)(1,2),點(diǎn)(﹣1,3)的“可控變點(diǎn)”為點(diǎn)(﹣1,﹣3).
(1)若點(diǎn)(﹣1,﹣2)是一次函數(shù)圖象上點(diǎn)M的“可控變點(diǎn)”,則點(diǎn)M的坐標(biāo)為 ;
(2)若點(diǎn)P在函數(shù)()的圖象上,其“可控變點(diǎn)”Q的縱坐標(biāo)y′的取值范圍是,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在長(zhǎng)方形中,點(diǎn)在上,并且,分別以、為折痕進(jìn)行折疊并壓平,如圖②,若圖②中,則的度數(shù)為______度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,點(diǎn)E在斜邊AB上,以AE為直徑的⊙O與BC邊相切于點(diǎn)D,連結(jié)AD.
(1)求證:AD是∠BAC的平分線(xiàn);
(2)若AC=3,BC=4,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com