【題目】如圖,A,B,C三點在同一直線上,分別以AB,BC(AB>BC)為邊,在直線AC的同側(cè)作等邊ΔABD和等邊ΔBCE,連接AE交BD于點M,連接CD交BE于點N,連接MN. 以下結(jié)論:①AE=DC,②MN//AB,③BD⊥AE,④∠DPM=60°,⑤ΔBMN是等邊三角形.其中正確的是__________(把所有正確的序號都填上).
【答案】①②④⑤
【解析】
①由三角形ABD與三角形BCE都為等邊三角形,利用等邊三角形的性質(zhì)得到兩條邊對應相等,兩個角相等都為60°,利用SAS即可得到三角形ABE與三角形DBC全等即可得結(jié)論;
②由①中三角形ABE與三角形DBC全等,利用全等三角形的對應角相等得到一對角相等,再由∠ABD=∠EBC=60°,利用平角的定義得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA可得出三角形EMB與三角形CNB全等,利用全等三角形的對應邊相等得到MB=NB,再由∠MBE=60°,利用有一個角為60°的等腰三角形為等邊三角形可得出三角形BMN為等邊三角形;可得∠BMN=60°,進行可得∠BMN=∠ABD,故MN//AB,從而可判斷②,⑤正確;
③無法證明PM=PN,因此不能得到BD⊥AE;
④由①得∠EAB=∠CDB,根據(jù)三角形內(nèi)角和和外角的性質(zhì)可證得結(jié)論.
①∵等邊△ABD和等邊△BCE,
∴AB=DB,BE=BC,∠ABD=∠EBC=60°,
∴∠ABE=∠DBC=120°,
在△ABE和△DBC中,
∵,
∴△ABE≌△DBC(SAS),
∴AE=DC,
故①正確;
∵△ABE≌△DBC,
∴∠AEB=∠DCB,
又∠ABD=∠EBC=60°,
∴∠MBE=180°-60°-60°=60°,
即∠MBE=∠NBC=60°,
在△MBE和△NBC中,
∵,
∴△MBE≌△NBC(ASA),
∴BM=BN,∠MBE=60°,
則△BMN為等邊三角形,
故⑤正確;
∵△BMN為等邊三角形,
∴∠BMN=60°,
∵∠ABD=60°,
∴∠BMN=∠ABD,
∴MN//AB,
故②正確;
③無法證明PM=PN,因此不能得到BD⊥AE;
④由①得∠EAB=∠CDB,∠APC+∠PAC+∠PCA=180°,
∴∠PAC+∠PCA=∠PDB+∠PCB=∠DBA=60°,
∵∠DPM =∠PAC+∠PCA
∴∠DPM =60°,故④正確,
故答案為:①②④⑤.
科目:初中數(shù)學 來源: 題型:
【題目】小亮家距離學校8千米,昨天早晨,小亮騎車上學途中,自行車“爆胎”,恰好路邊有“自行車”維修部,幾分鐘后車修好了,為了不遲到,他加快了騎車到校的速度.回校后,小亮根據(jù)這段經(jīng)歷畫出如下圖象.該圖象描繪了小亮行的路程S與他所用的時間t之間的關(guān)系.請根據(jù)圖象,解答下列問題:
(1)小亮行了多少千米時,自行車“爆胎”?修車用了幾分鐘?
(2)小亮到校路上共用了多少時間?
(3)如果自行車沒有“爆胎”,一直用修車前的速度行駛,那么他比實際情況早到或晚到學校多少分鐘(精確到0.1)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市為了回饋廣大新老客戶,元旦期間決定實行優(yōu)惠活動.方案一:非會員購物所有商品價格可獲九折優(yōu)惠;方案二:交納元會費成為該超市的會員,所有商品價格可獲八折優(yōu)惠.
(1)若用(元)表示商品價格,請你用含的式子分別表示兩種購物方案所付的錢數(shù).
(2)當商品價格是多少元時,兩種方案所付錢數(shù)相同?
(3)若你計劃在該超市購買商品,請分析選擇哪種方案更省錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面關(guān)于x的方程中:①ax2+x+2=0;②3(x-9)2-(x+1)2=1;③x+3=④x2-a=0(a為任意實數(shù);⑤=x-1一元二次方程的個數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個口袋中放有290個涂有紅、黑、白三種顏色的質(zhì)地相同的小球.若紅球個數(shù)是黑球個數(shù)的2倍多40個.從袋中任取一個球是白球的概率是.
(1)求袋中紅球的個數(shù);
(2)求從袋中任取一個球是黑球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下列材料,再解答下列問題:
題:分解因式:
解:將“”看成整體,設(shè),則原式=
再將“”還原,得原式=.
上述解題用到的是“整體思想”,“整體思想”是數(shù)學解題中常用的一種思想方法,請你仿照上面的方法解答下列問題:
(1)因式分解: ; .
(2)因式分解: ; .
(3)求證:若為正整數(shù),則式子的值一定是某一個正整數(shù)的平方.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市計劃在“十周年”慶典當天開展購物抽獎活動,凡當天在該超市購物的顧客,均有一次抽獎的機會,抽獎規(guī)則如下:將如圖所示的圓形轉(zhuǎn)盤平均分成四個扇形,分別標上1,2,3,4四個數(shù)字,抽獎者連續(xù)轉(zhuǎn)動轉(zhuǎn)盤兩次,當每次轉(zhuǎn)盤停止后指針所指扇形內(nèi)的數(shù)為每次所得的數(shù)(若指針指在分界線時重轉(zhuǎn));當兩次所得數(shù)字之和為8時,返現(xiàn)金20元;當兩次所得數(shù)字之和為7時,返現(xiàn)金15元;當兩次所得數(shù)字之和為6時返現(xiàn)金10元.
(1)試用樹狀圖或列表的方法表示出一次抽獎所有可能出現(xiàn)的結(jié)果;
(2)某顧客參加一次抽獎,能獲得返還現(xiàn)金的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菱形AOBC如圖放置,A(3,4),先將菱形向左平移9個單位長度,再向下平移1個單位,然后沿x軸翻折,最后繞坐標軸原點O旋轉(zhuǎn)90°得到點C的對應點為點P,則點P的坐標為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=30,∠AOB內(nèi)有一定點P,且OP=10.在OA上有一動點Q,OB上有一動點R.若ΔPQR周長最小,則最小周長是___________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com