【題目】湖南廣益實(shí)驗(yàn)即將開展校園文化藝術(shù)節(jié)活動(dòng),為了合理編排節(jié)目,對(duì)學(xué)生最喜愛(ài)的歌曲、舞蹈、小品、相聲四類節(jié)目進(jìn)行了一次隨機(jī)抽樣調(diào)查(每名學(xué)生必須選擇且只能選擇一類),并將調(diào)查結(jié)果繪制成如下不完整統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)圖中信息,回答下列問(wèn)題:

1)本次共調(diào)查了__________名學(xué)生;

2)根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛(ài)小品的人數(shù)為__________人;

3)九年一班和九年二班各有2名學(xué)生擅長(zhǎng)舞蹈,學(xué)校準(zhǔn)備從這4名學(xué)生中隨機(jī)抽取2名學(xué)生參加舞蹈節(jié)目的編排,那么抽取的2名學(xué)生恰好來(lái)自同一個(gè)班級(jí)的概率是多少?

【答案】150;(2640;(3

【解析】

1)用喜愛(ài)相聲類的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù);

2)用乘以樣本中最喜愛(ài)小品類人數(shù)所占的百分比即可得解;

3)畫樹狀圖表示出所有種等可能的結(jié)果數(shù),再找出抽取的名學(xué)生恰好來(lái)自同一班級(jí)的結(jié)果數(shù),然后根據(jù)概率公式求解.

解:(1

2

3)設(shè)一班2名舞蹈學(xué)生為、

二班2名舞蹈學(xué)生為,則有

∵通過(guò)觀察樹狀圖可知,共有種等可能的結(jié)果,抽取的名學(xué)生恰好來(lái)自同一班級(jí)的結(jié)果有

名學(xué)生恰好來(lái)自同一班級(jí)的概率為

故答案是:(123

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=4,點(diǎn)A在⊙O上,∠AMN=30°,B的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=AD,∠C=120°,點(diǎn)E在⊙O上.

(1)求∠AED的度數(shù);

(2)若⊙O的半徑為2,則的長(zhǎng)為多少?

(3)連接OD,OE,當(dāng)∠DOE=90°時(shí),AE恰好是⊙O的內(nèi)接正n邊形的一邊,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CBDB,坡面AC的傾斜角為45°.為了方便行人推車過(guò)天橋,市政部門決定降低坡度,使新坡面DC的坡度為i=3.若新坡角下需留3米寬的人行道,問(wèn)離原坡角(A點(diǎn)處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,割線PCD交⊙OCD,PAE=PDA.

1)求證:PA是⊙O的切線;

2)若PA=6CD=3PC,求PD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們把這個(gè)三角形叫做比例三角形,例如△ABC中,三邊分別為a、b、c,若滿足b2ac,則稱△ABC為比例三角形,其中b為比例中項(xiàng).

1)已知△ABC是比例三角形,AB2,BC3,請(qǐng)直接寫出所有滿足條件的AC的長(zhǎng);

2)如圖,在四邊形ABCD中,ADBC,對(duì)角線BD平分∠ABC,∠BAC=∠ADC

①請(qǐng)直接寫出圖中的比例三角形;

②作AHBD,當(dāng)∠ADC90°時(shí),求的值;

3)三邊長(zhǎng)分別為a、b、c的三角形是比例三角形,且b為比例中項(xiàng),已知拋物線yax2+bx+cy軸交于點(diǎn)B,頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),以OB為直徑的⊙M經(jīng)過(guò)點(diǎn)A,記△OAB的面積為S1,⊙M的面積為S2,試問(wèn)S1S2的值是否為定值?若是請(qǐng)求出定值,若不是請(qǐng)求出S1S2的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ACE,ACD均為直角三角形,∠ACE=90°,ADC=90°,AECD相交于點(diǎn)P,以CD為直徑的⊙O恰好經(jīng)過(guò)點(diǎn)E,并與AC,AE分別交于點(diǎn)B和點(diǎn)F.

(1)求證:∠ADF=EAC.

(2)若PC=PA,PF=1,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)涵洞的截面邊緣是拋物線形.現(xiàn)測(cè)得當(dāng)水面寬AB1.6m時(shí),涵洞頂點(diǎn)與水面的距離是2.4m.這時(shí),離開水面1.5m處,涵洞的寬DE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A、B⊙O上兩點(diǎn),△OAB外角的平分線交⊙O于另一點(diǎn)C,CD⊥ABAB的延長(zhǎng)線于D.

(1)求證:CD⊙O的切線;

(2)E的中點(diǎn),F⊙O上一點(diǎn),EFABG,若tan∠AFE=,BE=BG,EG=3,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案