【題目】如圖1,在等邊△ABC中,點(diǎn)E、D分別是AC,BC邊的中點(diǎn),點(diǎn)P為AB邊上的一個動點(diǎn),連接PE,PD,PC,DE.設(shè)AP=x,圖1中某條線段的長為y,若表示y與x的函數(shù)關(guān)系的圖像大致如圖2所示,則這條線段可能是圖1中的( )
A.線段PD
B.線段PC
C.線段PE
D.線段DE
【答案】C
【解析】解:設(shè)邊長AC=a,
則0<x<a,
根據(jù)題意和等邊三角形的性質(zhì)可知,
當(dāng)x= a時,線段PE有最小值;
當(dāng)x= a時,線段PC有最小值;
當(dāng)x= a時,線段PD有最小值;
線段DE的長為定值.
故選:C.
【考點(diǎn)精析】利用函數(shù)的圖象對題目進(jìn)行判斷即可得到答案,需要熟知函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對對應(yīng)值,他的橫坐標(biāo)x表示自變量的某個值,縱坐標(biāo)y表示與它對應(yīng)的函數(shù)值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=120°,∠COD在∠AOB內(nèi)部且∠COD=60°,下列說法:
①如果∠AOC=∠BOD,則圖中有兩對互補(bǔ)的角;
②如果作OE平分∠BOC,則∠AOC=2∠DOE;
③如果作OM平分∠AOC,且∠MON=90°,則ON平分∠BOD;
④如果在∠AOB外部分別作∠AOC、∠BOD的余角∠AOP、∠BOQ,則,
其中正確的有( )個.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了更有效地利用水資源,制定了居民用水收費(fèi)標(biāo)準(zhǔn):如果一戶每月用水量不超過20立方米,每立方米按1.5元收費(fèi);如果超過20立方米,超過部分每立方米按1.8元收費(fèi),其余仍按每立方米1.5元計算,另外,超過的部分每立方米加收污水處理費(fèi)1元,若某戶一月份用水量(>20)立方米,問:
(1)該戶一月份應(yīng)交水費(fèi)多少元?(請用含的代數(shù)式表示)
(2)該戶三月份用水量為32立方米,請問該戶三月份應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】任何實(shí)數(shù)a,可用[a]表示不超過a的最大整數(shù),如[4]=4,[]=1.現(xiàn)對72進(jìn)行如下操作:72 []=8 []=2 []=1,這樣對72進(jìn)行3次操作后變?yōu)?,類似地,①對81進(jìn)行________次操作后變?yōu)?;②進(jìn)行3次操作后變?yōu)?的所有正整數(shù)中,最大的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值:
(1)(3a2-ab+7)-(5ab-4a2+7),其中, a=2,b=;
(2)3(ab-5b2+2a2)-(7ab+16a2-25b2),其中|a-1|+(b+1)2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家飲水機(jī)中原有水的溫度為20℃,通電開機(jī)后,飲水機(jī)自動開始加熱[此過程中水溫y(℃)與開機(jī)時間x(分)滿足一次函數(shù)關(guān)系],當(dāng)加熱到100℃時自動停止加熱,隨后水溫開始下降[此過程中水溫y(℃)與開機(jī)時間x(分)成反比例關(guān)系],當(dāng)水溫降至20℃時,飲水機(jī)又自動開始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:
(1)當(dāng)0≤x≤8時,求水溫y(℃)與開機(jī)時間x(分)的函數(shù)關(guān)系式;
(2)求圖中t的值;
(3)若小明在通電開機(jī)后即外出散步,請你預(yù)測小明散步45分鐘回到家時,飲水機(jī)內(nèi)的溫度約為多少℃?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預(yù)測,種植樹木的利潤y1與投資量x成正比例關(guān)系,種植花卉的利潤y2與投資量x的平方成正比例關(guān)系,并得到了表格中的數(shù)據(jù).
投資量x(萬元) | 2 |
種植樹木利潤y1(萬元) | 4 |
種植花卉利潤y2(萬元) | 2 |
(1)分別求出利潤y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,設(shè)他投入種植花卉金額m萬元,種植花卉和樹木共獲利利潤W萬元,直接寫出W關(guān)于m的函數(shù)關(guān)系式,并求他至少獲得多少利潤?他能獲取的最大利潤是多少?
(3)若該專業(yè)戶想獲利不低于22萬,在(2)的條件下,直接寫出投資種植花卉的金額m的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.
(1)連接BC,求BC的長;
(2)求四邊形ABDC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠B=90°,且AD=9cm,AB=4cm,延長BC到點(diǎn)E,使CE=3cm,連接DE.若動點(diǎn)P從A點(diǎn)出發(fā),以每秒2cm的速度沿線段AD運(yùn)動;動點(diǎn)Q從E點(diǎn)出發(fā)以每秒3cm的速度沿EB向B點(diǎn)運(yùn)動,當(dāng)點(diǎn)P、Q有一個到位置時,動點(diǎn)P、Q同時停止運(yùn)動,設(shè)點(diǎn)P、Q同時出發(fā),并運(yùn)動了t秒,回答下列問題:
(1)求DE的長
(2)當(dāng)t為多少時,四邊形PQED成為平行四邊形;
(3)請直接寫出使得△DQE是等腰三角形時t的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com