【題目】某校為迎接縣中學(xué)生籃球比賽,計(jì)劃購(gòu)買A、B兩種籃球共20個(gè)供學(xué)生訓(xùn)練使用.若購(gòu)買A種籃球6個(gè),則購(gòu)買兩種籃球共需費(fèi)用720元;若購(gòu)買A種籃球12個(gè),則購(gòu)實(shí)兩種籃球共需費(fèi)用840元.

1AB兩種籃球共需單價(jià)各多少元?

2)設(shè)購(gòu)買A種籃球x個(gè)且A種籃球不少于8個(gè),所需費(fèi)用為y元,試確定yx的關(guān)系式.

【答案】1A種籃球每個(gè)50元,B種籃球每個(gè)30元;(2y20x+6008≤x≤20

【解析】

1)根據(jù)費(fèi)用可得等量關(guān)系為:6個(gè)A種籃球的總費(fèi)用+14個(gè)B種籃球的總費(fèi)用=720;12個(gè)A種籃球的總費(fèi)用+8個(gè)B種籃球的總費(fèi)用=840,把相關(guān)數(shù)值代入可得A、B兩種籃球單價(jià);

2)關(guān)系式為:y等于兩種籃球費(fèi)用和,A種籃球的個(gè)數(shù)≥8,即可求解.

解:(1)設(shè)A種籃球每個(gè)x元,B種籃球每個(gè)y元,

依題意得,,解得

答:A種籃球每個(gè)50元,B種籃球每個(gè)30元;

2)設(shè)購(gòu)買A種籃球x個(gè),則B種為(20x)個(gè),

由題意得:,

yx的關(guān)系式為:y20x+6008≤x≤20).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn)M,N在同一個(gè)正比例函數(shù)圖象上的是(  。

A.M(2,﹣3),N(﹣4,6)B.M(﹣2,3),N(4,6)

C.M(﹣2,﹣3),N(4,﹣6)D.M(2,3),N(﹣4,6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是一種折疊式晾衣架.晾衣時(shí),該晾衣架左右晾衣臂張開后示意圖如圖2所示,兩支腳OCOD10分米,展開角∠COD60°,晾衣臂OAOB10分米,晾衣臂支架HGFE6分米,且HOFO4分米.當(dāng)∠AOC90°時(shí),點(diǎn)A離地面的距離AM_______分米;當(dāng)OB從水平狀態(tài)旋轉(zhuǎn)到OB′(在CO延長(zhǎng)線上)時(shí),點(diǎn)E繞點(diǎn)F隨之旋轉(zhuǎn)至OB′上的點(diǎn)E′處,則BE′﹣BE_________分米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在O中,點(diǎn)DO上的一點(diǎn),點(diǎn)C是直徑AB延長(zhǎng)線上一點(diǎn),連接BD,CD,且∠A=∠BDC

1)求證:直線CDO的切線;

2)若CM平分∠ACD,且分別交AD,BD于點(diǎn)M,N,當(dāng)DM2時(shí),求MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解全校1500名學(xué)生對(duì)學(xué)校設(shè)置的籃球、羽毛球、乒乓球、踢毽子、跳繩共5項(xiàng)體育活動(dòng)的喜愛情況,在全校范圍內(nèi)隨機(jī)抽查部分學(xué)生,對(duì)他們喜愛的體育項(xiàng)目(每人只選一項(xiàng))進(jìn)行了問(wèn)卷調(diào)查,將統(tǒng)計(jì)數(shù)據(jù)繪制成如圖兩幅不完整統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息解答下列各題.

(1)m= %,這次共抽取了 名學(xué)生進(jìn)行調(diào)查;并補(bǔ)全條形圖;

(2)請(qǐng)你估計(jì)該校約有 名學(xué)生喜愛打籃球;

(3)現(xiàn)學(xué)校準(zhǔn)備從喜歡跳繩活動(dòng)的4人(三男一女)中隨機(jī)選取2人進(jìn)行體能測(cè)試,請(qǐng)利用列表或畫樹狀圖的方法,求抽到一男一女學(xué)生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖拋物線yx2+bx+cc0)與x軸交于A、B兩點(diǎn),(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D,且OBOC3,點(diǎn)E為線段BD上的一個(gè)動(dòng)點(diǎn),EFx軸于F

1)求拋物線的解析式;

2)是否存在點(diǎn)E,使ECF為直角三角形?若存在,求點(diǎn)E的坐標(biāo);不存在,請(qǐng)說(shuō)明理由;

3)連接AC、BC,若點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)P運(yùn)動(dòng)到什么位置時(shí),∠PCB=∠ACO,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐:

動(dòng)手操作:如圖1,四邊形是一張矩形紙片,,點(diǎn)分別在,邊上,且,連接.將,分別沿折疊,點(diǎn),分別落在點(diǎn),處.

探究展示:

(1)“刻苦小組”發(fā)現(xiàn):,且,并展示了如下的證明過(guò)程.

證明:在矩形中,,.

又∵,

.

,.

.(依據(jù)1)

.

.(依據(jù)2)

反思交流:①上述證明過(guò)程中的“依據(jù)1”與“依據(jù)2”分別指什么?

②“勤奮小組”認(rèn)為:還可以通過(guò)證明四邊形是平行四邊形獲證,請(qǐng)你根據(jù)“勤奮小組”的證明思路寫出證明過(guò)程.

猜想證明:

(2)如圖2,折疊過(guò)程中,當(dāng)點(diǎn)在直線的同側(cè)時(shí),延長(zhǎng)于點(diǎn),延長(zhǎng)于點(diǎn),則四邊形是什么特殊四邊形?請(qǐng)說(shuō)明理由.

聯(lián)想拓廣:

(3)如圖3,連接,,.

①當(dāng)時(shí),的長(zhǎng)為________;

的長(zhǎng)有最大值嗎?若有,請(qǐng)你直接寫出長(zhǎng)的最大值和此時(shí)四邊形的形狀;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線與直線l交于x軸上的一點(diǎn)A,和另一點(diǎn)

求拋物線的解析式;

點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn)點(diǎn)PA,B兩點(diǎn)之間,但不包括A,B兩點(diǎn)于點(diǎn)M軸交AB于點(diǎn)N,求MN的最大值;

如圖2,將拋物線繞頂點(diǎn)旋轉(zhuǎn)后,再作適當(dāng)平移得到拋物線,已知拋物線的頂點(diǎn)E在第一象限的拋物線上,且拋持線與拋物線交于點(diǎn)D,過(guò)點(diǎn)D軸交拋物線于點(diǎn)F,過(guò)點(diǎn)E軸交拋物線于點(diǎn)G,是否存在這樣的拋物線,使得四邊形DFEG為菱形?若存在,請(qǐng)求E點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=k1x+b和反比例函數(shù)的圖象相交于點(diǎn)Pm1,n+1),點(diǎn)Q0,a)在函數(shù)y=k1x+b的圖象上,且m,n是關(guān)于x的方程ax23a+1x+2a+1=0的兩個(gè)不相等的整數(shù)根(其中a為整數(shù)),求一次函數(shù)和反比例函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案