【題目】如圖,∠1=∠2,∠C=∠D,AC、BD交于E點(diǎn),下列結(jié)論中不正確的是( )
A.∠DAE=∠CBE
B.△DEA不全等于△CEB
C.CE=DE
D.△EAB是等腰三角形
【答案】B
【解析】
試題分析:根據(jù)三角形的內(nèi)角和定理就可以求出∠DAB=∠CBA,由等式的性質(zhì)就可以得出∠DAE=∠CBE,根據(jù)AAS就可以得出△DEA≌△CEB;由△DEA≌△CEB就可以得出CE=DE,∠1=∠2就可以得出AE=BE,就可以得出結(jié)論.
解:∵∠1+∠C+∠ABC=∠2+∠D+∠DAB=180°,且∠1=∠2,∠C=∠D,
∴∠ABC=∠DAB,
∴∠ABC﹣∠2=∠DAB﹣∠1,
∴∠DAB=∠CBA.故A正確;
在△DEA和△CEB中
,
∴△DEA≌△CEB(AAS),故B錯誤;
∴AC=BD.
∵∠1=∠2,
∴BE=AE,
∴△EAB是等腰三角形,AC﹣AE=BD﹣BE,故D正確;
∴CE=DE.故C正確.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)(﹣1,4),與直線y=﹣x+1相交于A、B兩點(diǎn),其中點(diǎn)A在y軸上,過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(﹣3,0).點(diǎn)M是直線AB上方的拋物線上一動點(diǎn),過M作MP丄x軸,垂足為點(diǎn)P,交直線AB于點(diǎn)N,設(shè)點(diǎn)M的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)當(dāng)m為何值時,線段MN取最大值?并求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋中裝著3個紅球和2個黃球,它們只有顏色上的區(qū)別,隨機(jī)從袋中摸出1個小球,記下顏色不放回,再從袋子中任意取出1個小球,記下顏色:
(1)若取出的第一個小球?yàn)榧t色,則取出的第二個小球仍為紅球的概率是 ;
(2)按要求從袋子中取出的兩個球,請畫出樹狀圖或列表格,并求出取出的兩個小球中有1個黃球、1個紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形的一個外角小于和它相鄰的內(nèi)角,那么這個三角形為( ).
A.鈍角三角形 B.銳角三角形 C.直角三角形 D.以上都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以3cm/s的速度由點(diǎn)B向C點(diǎn)運(yùn)動,同時,點(diǎn)Q在線段CA上由點(diǎn)C向A點(diǎn)運(yùn)動.
(1)若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由.
(2)若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度不相等,當(dāng)點(diǎn)Q的運(yùn)動速度為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算中,正確的是( )
A.x2x3=x6 B.(x3)2=x5
C.x+x2=2x3 D.﹣x3÷x2=﹣x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=2(x﹣3)2+4的頂點(diǎn)坐標(biāo)是( )
A.(3,4) B.(4,3) C.(﹣3,4) D.(﹣3,﹣4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com