【題目】如圖,在ABCD中,AB⊥AC,對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉一個角度α(0°<α≤90°),分別交線段BC,AD于點E,F,連接BF.
(1)如圖1,在旋轉的過程中,求證:OE=OF;
(2)如圖2,當旋轉至90°時,判斷四邊形ABEF的形狀,并證明你的結論;
(3)若AB=1,BC=,且BF=DF,求旋轉角度α的大。
【答案】(1)證明見解析;(2)平行四邊形,理由見解析;(3)45°
【解析】
(1)由平行四邊形的性質得出∠OAF=∠OCE,OA=OC,進而判斷出△AOF≌△COE,即可得出結論;
(2)先判斷出∠BAC=∠AOF,得出AB∥EF,即可得出結論;
(3)先求出AC=2,進而得出A=1=AB,即可判斷出△ABO是等腰直角三角形,進一步判斷出△BFD是等腰三角形,利用等腰三角形的三線合一得出∠BOF=90°,即可得出結論.
(1)證明:在ABCD中,AD∥BC,
∴∠OAF=∠OCE,
∵OA=OC,∠AOF=∠COE,
∴△AOF≌△COE(ASA),
∴OE=OF;
(2)當旋轉角為90°時,四邊形ABEF是平行四邊形,理由:
∵AB⊥AC,
∴∠BAC=90°,
∵∠AOF=90°,
∴∠BAC=∠AOF,
∴AB∥EF,
∵AF∥BE,
∴四邊形ABEF是平行四邊形;
(3)在Rt△ABC中,AB=1,BC=,
∴AC==2,
∴OA=1=AB,
∴△ABO是等腰直角三角形,
∴∠AOB=45°,
∵BF=DF,
∴△BFD是等腰三角形,
∵四邊形ABCD是平行四邊形,
∴OB=OD,
∴OF⊥BD(等腰三角形底邊上的中線是底邊上的高),
∴∠BOF=90°,
∴∠α=∠AOF=∠BOF﹣∠AOB=45°.
科目:初中數學 來源: 題型:
【題目】早晨,小剛沿著通往學校唯一的一條路(直路)上學,途中發(fā)現忘帶飯盒,停下來往家里打電話,媽媽接到電話后帶上飯盒馬上趕往學校,同時小剛返回,兩人相遇后,小剛立即趕往學校,媽媽回家,15分鐘后媽媽到家,再經過3分鐘小剛到達學校,小剛始終以100米/分的速度步行,小剛和媽媽的距離y(單位:米)與小剛打完電話后的步行時間t(單位:分)之間的函數關系如圖,下列四種說法中錯誤的是( )
A. 打電話時,小剛和媽媽的距離為1250米
B. 打完電話后,經過23分鐘小剛到達學校
C. 小剛和媽媽相遇后,媽媽回家的速度為150米/分
D. 小剛家與學校的距離為2550米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=﹣x2+bx的圖象與x軸的正半軸交于點A(4,0),過A點的直線與y軸的正半軸交于點B,與二次函數的圖象交于另一點C,過點C作CH⊥x軸,垂足為H.設二次函數圖象的頂點為D,其對稱軸與直線AB及x軸分別交于點E和點F.
(1)求這個二次函數的解析式;
(2)如果CE=3BC,求點B的坐標;
(3)如果△DHE是以DH為底邊的等腰三角形,求點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:b是最小的正整數,且a、b滿足+=0,請回答問題:
(1)請直接寫出a、b、c的值;
(2)數軸上a、b、c所對應的點分別為A、B、C,點M是A、B之間的一個動點,其對應的數為m,請化簡(請寫出化簡過程);
(3)在(1)(2)的條件下,點A、B、C開始在數軸上運動.若點A以每秒1個單位長度的速度向左運動.同時,點B和點C分別以每秒2個單位長度和5個單位長度的速度向右運動.假設t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB.請問:BC-AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解并解答:
(1)我們把多項式及叫做完全平方式,在運用完全平方公式進行因式分解時,關鍵是判斷這個多項式是不是一個完全平方式.同樣地,把一個多項式進行部分因式分解可以來解決求代數式值的最大(或最小)值問題.
例如:①
∵是非負數,即≥0
∴+2≥2
則這個代數式的最小值是_______,這時相應的的值是_______.
②
=
=
=
=
∵是非負數,即≥0
∴-7≥-7
則這個代數式的最小值是____,這時相應的的值是______.
(2)仿照上述方法求代數式 的最大(或最小)值,并寫出相應的的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A是反比例函數的圖象上的一個動點,連接OA,若將線段OA繞點O順時針旋轉90°得到線段OB,則點B所在圖象的函數表達式為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,由邊長均為1個單位的小正方形組成的網格圖中,點都在格點上。
(1)的面積為__________________________;
(2)以為邊畫出一個與全等的三角形,并進一步探究:滿足條件的三角形可以作出_____;
(3)在直線上確定點,使的長度最短.(畫出示意圖,并標明點的位置即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了保護環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購買A,B兩種型號的污水處理設備共10臺.已知用90萬元購買A型號的污水處理設備的臺數與用75萬元購買B型號的污水處理設備的臺數相同,每臺設備價格及月處理污水量如下表所示:
污水處理設備 | A型 | B型 |
價格(萬元/臺) | m | m-3 |
月處理污水量(噸/臺) | 220 | 180 |
(1)求m的值;
(2)由于受資金限制,指揮部用于購買污水處理設備的資金不超過165萬元,問有多少種購買方案?并求出每月最多處理污水量的噸數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當D在AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com