【題目】在校園歌手大獎賽上,比賽規(guī)則為:七位評委打分,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)取平均數(shù)即為選手的最后得分.七位評委給某位歌手打出的分?jǐn)?shù)如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,則這位歌手的最后得分是多少?

【答案】9.5()

【解析】試題分析:9.5,9.4,9.6,9.9,9.3,9.7,9.0,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)是9.5,9.4,9.6,9.3,9.7;再求其平均數(shù)即可.

試題解析:

最高分:9.9,最低分9.0;
平均數(shù)是(9.5+9.4+9.6+9.3+9.7)÷5=9.5分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點A,B,C的坐標(biāo)分別是(0,a),(b,0),(a,﹣b)且a2+b2+4a﹣4b=﹣8,連接BC交y軸于點M,N為AC中點,連接NO并延長至D,使OD=ON,連接BD.
(1)求a,b的值;
(2)求∠DBC;
(3)如圖2,Q為ON,BC的交點,連接AQ,AB,過點O作OP⊥OQ,交AB于P,過點O作OH⊥AB于H,交BQ于E,請?zhí)骄烤段EH,PH與OH之間有何數(shù)量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】幻方的歷史很悠久,傳統(tǒng)幻方最早出現(xiàn)在下雨時代的“洛書”.“洛書”用今天的數(shù)學(xué)符號翻譯出來,就是一個三階幻方,如圖1所示.

(1)①請你依據(jù)“洛書”把1,2,3,5,8填入如圖2剩余的方格中使每橫行、每豎列以及兩條對角線上的數(shù)的和都是15;②把﹣4,﹣3,﹣2,﹣1,0,1,2,3,4填入如圖2的方格中,使每橫行、每豎列以及兩條對角線上的數(shù)的和都相等;
(2)若把2x﹣4,2x﹣3,2x﹣2,2x﹣1,2x,2x+1,2x+2,2x+3,2x+4填入如圖3的方格中,使每橫行、每豎列以及兩條對角線上的數(shù)的和都相等,則每行的和是(用含x的式子表示)
(3)根據(jù)上述填數(shù)經(jīng)驗,請把32 , 34 , 36 , 38 , 310 , 312 , 314 , 316 , 318填入如圖4的方格中,使每橫行、每豎列以及兩條對角線上的數(shù)的積都相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一組數(shù)據(jù)2,3,4,5,x的方差與另一組數(shù)據(jù)5,6,7,8,9的方差相等,x= _______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】百子回歸圖是由1,2,3,…,100無重復(fù)排列而成的正方形數(shù)表,它是一部數(shù)化的澳門簡史,如:中央四位“19 99 12 20”標(biāo)示澳門回歸日期,最后一行中間兩位“23 50”標(biāo)示澳門面積,…,同時它也是十階幻方,其每行10個數(shù)之和,每列10個數(shù)之和,兩條對角線10個數(shù)之和均為有理數(shù)n,則4(n﹣1)的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程
(1)
(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于使用高產(chǎn)水稻品種張輝家的水稻產(chǎn)量從2013年的5噸增加到2015年的6.05,平均每年增長的百分率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場以每件280元的價格購進(jìn)一批商品,當(dāng)每件商品售價為360元時,每月可售出60件,為了迎接“雙11”節(jié),擴大銷售,商場決定采取適當(dāng)降價的方式促銷,經(jīng)調(diào)查發(fā)現(xiàn),如果每件商品降價1元,那么商場每月就可以多售出5件。

1)降價前商場每月銷售該商品的利潤是多少元?

2)要使商場每月銷售這種商品的利潤達(dá)到7200元,且更有利于減少庫存,則每件商品應(yīng)降價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點E為對角線AC上的一點,連接BE,DE

(1)如圖1,求證:BCE≌△DCE;

(2)如圖2,延長BE交直線CD于點F,G在直線AB上,且FG=FB

①求證:DEFG;

②已知正方形ABCD的邊長為2,若點E在對角線AC上移動,當(dāng)BFG為等邊三角形時,求線段DE的長。

查看答案和解析>>

同步練習(xí)冊答案