【題目】如圖:已知在△ABC中,AD⊥BC于D,E是AB的中點,
(1)求證:E點一定在AD的垂直平分線上;
(2)如果CD=9cm,AC=15cm,F點在AC邊上從A點向C點運動速度是3cm/s,求當運動幾秒鐘時.△ADF是等腰三角形?
【答案】(1)見解析;(2)點F運動4s或s時,△ADF是等腰三角形
【解析】
(1)由直角三角形的性質得AE=DE=AB,進而即可得到結論;
(2)先求出AD=12cm,再分三種情況:①當FA=AD時,②當FA=FD時,③當DF=AD時,分別求出點F的運動時間,即可.
(1)∵AD⊥BC,
∴∠ADB=90°,
∵E是AB的中點,
∴AE=DE=AB,
∴E點一定在AD的垂直平分線上;
(2)∵AD⊥BC,
∴AD= ==12cm,
①當FA=AD=12cm時,t===4s,
②當FA=FD時,則∠FAD=∠ADF,
又∵∠FAD+∠C=∠ADF+∠FDC=90°,
∴∠C=∠FDC,
∴FD=FC,
∴FA=FC=AC=cm,
∴t===s,
③當DF=AD時,點F不存在,
綜上所述,當點F運動4s或s時,△ADF是等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=x-5,令x= ,1, ,2, ,3,,4,,5,可得函數(shù)圖象上的十個點.在這十個點中隨機取兩個點P(x1,y1),Q(x2,y2),則P,Q兩點在同一反比例函數(shù)圖象上的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△AOB是直角三角形,∠AOB=90°,邊AB與y軸交于點C.
(1)若∠A=∠AOC,試說明:∠B=∠BOC;
(2)延長AB交x軸于點E,過O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度數(shù);
(3)如圖,OF平分∠AOM,∠BCO的平分線交FO的延長線于點P,∠A=40°,當△ABO繞O點旋轉時(邊AB與y軸正半軸始終相交于點C),問∠P的度數(shù)是否發(fā)生改變?若不變,求其度數(shù);若改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=的圖象如圖所示,則以下結論:①m<0;②在每個分支上y隨x的增大而增大;③若點A(-1,a),點B(2,b)在圖象上,則a <b;④若點P(x,y)在圖象上,則點P1(-x,y)也在圖象上.其中正確的個數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩臺機床同時加工直徑為的同種規(guī)格零件,為了檢查兩臺機床加工零件的穩(wěn)定性,質檢員從兩臺機床的產品中各抽取件進行檢測,結果如下(單位:):
甲 | |||||
乙 |
(1)分別求出這兩臺機床所加工零件直徑的平均數(shù)和方差;
(2)根據所學的統(tǒng)計知識,你認為哪一臺機床生產零件的穩(wěn)定性更好一些,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】端午節(jié)期間,甲、乙兩人沿同一路線行駛,各自開車同時去離家560千米的景區(qū)游玩,甲先以每小時60千米的速度勻速行駛1小時,再以每小時m千米的速度勻速行駛,途中體息了一段時間后,仍按照每小時m千米的速度勻速行駛,兩人同時到達目的地,圖中折線、線段分別表示甲、乙兩人所走的路程,與時間之間的函數(shù)關系的圖象請根據圖象提供的信息,解決下列問題:
圖中E點的坐標是______,題中______,甲在途中休息______h;
求線段CD的解析式,并寫出自變量x的取值范圍;
兩人第二次相遇后,又經過多長時間兩人相距20km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠擬建一座平面圖形為矩形且面積為200平方米的三級污水處理池(平面圖如圖ABCD所示).由于地形限制,三級污水處理池的長、寬都不能超過16米.如果池的外圍墻建造單價為每米400元,中間兩條隔墻建造單價為每米300元,池底建造單價為每平方米80元.(池墻的厚度忽略不計)當三級污水處理池的總造價為47200元時,求池長x.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩人輪流在黑板上寫下不超過 的正整數(shù)(每次只能寫一個數(shù)),規(guī)定禁止在黑板上寫已經寫過的數(shù)的約數(shù),最后不能寫的為失敗者,如果甲寫第一個,那么,甲寫數(shù)字( )時有必勝的策略.
A. 10 B. 9 C. 8D.6
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com