【題目】ABC中,AB=AC,BAC=30°,ABC的面積為49,P為直線BC上一點,PEAB,PFAC,CHAB,垂足分別為E,F(xiàn),H.若PF=3,則PE=________

【答案】410

【解析】

連接AP.先根據(jù)三角形的面積公式分別表示出SABP,SACP,SABC,再由SABP=SACP+SABC即可得出PE=PF+PH,先根據(jù)直角三角形的性質(zhì)得出AC=2CH,再由ABC的面積為49,求出CH=7,由于CH>PF,則可分兩種情況進(jìn)行討論:①P為底邊BC上一點,運用結(jié)論PE+PF=CH,PBC延長線上的點時,運用結(jié)論PE=PF+CH.

PEABPFAC,CHAB

SABP=SACP+SABC,

又∵AB=AC,

PE=PF+CH,

∵在ACH,A=30°,

AC=2CH

12×2CHCH=49,

CH=7,

分兩種情況:

P為底邊BC上一點,如圖①,

PE+PF=CH

PE=CHPF=73=4;

PBC延長線上的點時,如圖②,

PE=PF+CH

PE=3+7=10.

故答案為:410.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把一條拋物線先向上平移3個單位長度,然后繞原點選擇180°得到拋物線y=x2+5x+6,則原拋物線的解析式是(  )
A.y=﹣(x﹣ 2
B.y=﹣(x+ 2
C.y=﹣(x﹣ 2
D.y=﹣(x+ 2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標(biāo)系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象大致為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x-2y=-5和x+y=1分別與x軸交于A、B兩點,這兩條線的交點為P.
(1)求點P的坐標(biāo).
(2)求△APB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙M與x軸相切于點A(8,0),與y軸分別交于點B(0,4)和點C(0,16),則圓心M到坐標(biāo)原點O的距離是(  )

A.10
B.8
C.4
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】樂平街上新開張了一家“好又多”超市,這個星期天,張明和媽媽去這家新開張的超市買東西,如圖反映了張明從家到超市的時間t(分鐘)與距離s(米)之間關(guān)系的一幅圖:①圖中反映了哪兩個變量之間的關(guān)系?超市離家多遠(yuǎn)?②張明從家出發(fā)到達(dá)超市用了多少時間?從超市返回家花了多少時間?
③張明從家出發(fā)后20分鐘到30分鐘內(nèi)可能在做什么?④張明從家到超市時的平均速度是多少?返回時的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】宜賓市某化工廠,現(xiàn)有A種原料52千克,B種原料64千克,現(xiàn)用這些原料生產(chǎn)甲、乙兩種產(chǎn)品共20件.已知生產(chǎn)1件甲種產(chǎn)品需要A種原料3千克,B種原料2千克;生產(chǎn)1件乙種產(chǎn)品需要A種原料2千克,B種原料4千克,則生產(chǎn)方案的種數(shù)為( 。
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E:y2=4x的準(zhǔn)線為l,焦點為F,O為坐標(biāo)原點.
(1)求過點O,F(xiàn),且與l相切的圓的方程;
(2)過F的直線交拋物線E于A,B兩點,A關(guān)于x軸的對稱點為A′,求證:直線A′B過定點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=Asin(ωx+φ),(0<φ<π)的圖象如圖所示,若f(x0)=3,x0∈( , ),則sinx0的值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案