【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于,與軸交于,與軸交于,且

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)直接寫出不等式:的解集;

3軸上一動(dòng)點(diǎn),直接寫出叫的最大值和此時(shí)點(diǎn)的坐標(biāo).

【答案】1,;(2;(3的最大值為,此時(shí)P點(diǎn)坐標(biāo)為

【解析】

1)過軸于,得,,可求得,即得到A點(diǎn)坐標(biāo),將A點(diǎn)坐標(biāo)代入,可求得b,把代入,可求得m,進(jìn)而求得反比例函數(shù)解析式;

2)求的解集,即為求反比例函數(shù)大于一次函數(shù)時(shí)自變量的范圍,由圖可知當(dāng)時(shí),

3)作點(diǎn)關(guān)于軸的對稱點(diǎn),的延長線于軸的交點(diǎn)即為所求點(diǎn),求得直線的解析式,即可求出P點(diǎn)坐標(biāo)及值,此時(shí)值最大,即為

1)過軸于,

軸,

,

,

即:,

代入得:,

∴直線的解析式為:

代入得:

代入得:,

故答案為:,

2)由圖象可知當(dāng)時(shí),

故答案為:

3)作點(diǎn)關(guān)于軸的對稱點(diǎn)的延長線于軸的交點(diǎn)即為所求點(diǎn)

設(shè)直線的解析式為y=kx+b

解得

∴直線的解析式為y=2x+6

當(dāng)x=0時(shí),y=6

的最大值為

故答案為:的最大值為,此時(shí)P點(diǎn)坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,半徑OAOB,點(diǎn)DOAOA的延長線上(不與點(diǎn)O,A重合),直線BD交⊙O于點(diǎn)C,過C作⊙O的切線交直線OA于點(diǎn)P.

1)如圖(1),點(diǎn)D在線段OA上,若∠OBC=15°, 求∠OPC的大。

2)如圖(2),點(diǎn)DOA的延長線上,若∠OBC=65°,求∠OPC的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC邊相切于點(diǎn)C,與AB、BC邊分別交于點(diǎn)DE,,CE的直徑.

1)求證:AB的切線;

2)若AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩條鄰邊長分別為1的矩形紙片剪成四個(gè)等腰三角形紙片(無余紙片),各種剪法剪出的等腰三角形中,其中一個(gè)等腰三角形的腰長可以是下列數(shù)中的_____(填序號(hào)).

,②11,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形DEFG中,DG2DE3,RtABC中,∠ACB90°,CACB2,FG,BC的延長線相交于點(diǎn)O,且FGBCOG2,OC4.將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α0°≤α180°)得到△ABC′.

1)當(dāng)α30°時(shí),求點(diǎn)C′到直線OF的距離.

2)在圖1中,取AB′的中點(diǎn)P,連結(jié)CP,如圖2

當(dāng)CP與矩形DEFG的一條邊平行時(shí),求點(diǎn)C′到直線DE的距離.

當(dāng)線段AP與矩形DEFG的邊有且只有一個(gè)交點(diǎn)時(shí),求該交點(diǎn)到直線DG的距離的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理有著悠久的歷史,它曾引起很多人的興趣,1955年希臘發(fā)行了兩枚以勾股圖為背景的郵票.所謂勾股圖是指以直角三角形的三邊為邊向外作正方形構(gòu)成,它可以驗(yàn)證勾股定理,如圖的勾股圖中,已知,,.作四邊形,滿足點(diǎn)、在邊上,點(diǎn)、分別在邊,上,,、是直線的交點(diǎn).那么的長等于(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為6cm,B⊙O外一點(diǎn),OB⊙O于點(diǎn)A,AB=OA,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以π cm/s的速度在⊙O上按逆時(shí)針方向運(yùn)動(dòng)一周回到點(diǎn)A立即停止.當(dāng)點(diǎn)P運(yùn)動(dòng)的時(shí)間為______時(shí),BP⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B在線段AC上,點(diǎn)D,EAC同側(cè),∠A=∠C=90°,BD⊥BE,AD=BC

(1)求證:AC=AD+CE;

(2)AD=3CE=5,點(diǎn)P為線段AB上的動(dòng)點(diǎn),連接DP,作PQ⊥DP,交直線BE于點(diǎn)Q

(i)當(dāng)點(diǎn)PA,B兩點(diǎn)不重合時(shí),求的值;

(ii)當(dāng)點(diǎn)PA點(diǎn)運(yùn)動(dòng)到AC的中點(diǎn)時(shí),求線段DQ的中點(diǎn)所經(jīng)過的路徑(線段)長.(直接寫出結(jié)果,不必寫出解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)游泳館夏季推出兩種收費(fèi)方式.方式一:先購買會(huì)員證,會(huì)員證200元,只限本人當(dāng)年使用,憑證游泳每次需另付費(fèi)10元:方式二:不購買會(huì)員證,每次游泳需付費(fèi)20元.

1)若甲計(jì)劃今年夏季游泳的費(fèi)用為500元,則選擇哪種付費(fèi)方式游泳次數(shù)比較多?

2)若乙計(jì)劃今年夏季游泳的次數(shù)超過15次,則選擇哪種付費(fèi)方式游泳花費(fèi)比較少?

查看答案和解析>>

同步練習(xí)冊答案