【題目】已知,點在數(shù)軸上對應(yīng)的數(shù)為,點對應(yīng)的數(shù)為,為原點,且、滿足:.試解答下列問題:
(1)求數(shù)軸上線段的長度;
(2)若點以每秒2個單位長度的速度沿數(shù)軸向右運動,則經(jīng)過秒后點表示的數(shù)為 ;(用含的代數(shù)式表示)
(3)若點,都以每秒2個單位長度的速度沿數(shù)軸向右運動,而點不動,經(jīng)過秒后其中一個點是一條線段的中點,求此時的值.
【答案】(1)6;(2);(3)當(dāng)值為時點為線段的中點,當(dāng)值為5時點為線段的中點.
【解析】
(1)根據(jù)絕對值及偶次方的非負性,即可得出a、b的值,進而即可求出線段AB的長度;
(2)根據(jù)-4+點A運動的速度×t=經(jīng)過t秒后點A表示的數(shù),即可得出結(jié)論;
(3)找出t秒后點A、B表示的數(shù),分點O為線段AB的中點及點A為線段OB的中點兩種情況考慮:①當(dāng)點O為線段AB的中點時,根據(jù)中點坐標公式即可求出此時的t值;②當(dāng)點A為線段OB的中點時,根據(jù)中點坐標公式即可求出此時的t值.綜上即可得出結(jié)論.
(1),
,,
.
(2)秒后點表示的數(shù)為.
故答案為:.
(3)秒后點表示的數(shù)為,點表示的數(shù)為.
①當(dāng)點為線段的中點時,有,
解得:;
②當(dāng)點為線段的中點時,有,
解得:.
綜上所述:當(dāng)值為時點為線段的中點,當(dāng)值為5時點為線段的中點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.過點C作CE⊥AB于E,交對角線BD于F,點G為BC中點,連接EG、AF.
(1)求EG的長;
(2)求證:CF=AB+AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是矩形兩條對角線的交點,E是邊上的點,沿折疊后,點恰好與點重合.若,則折痕的長為 ( )
A. B. C. D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,點P為線段AD上的一個動點,PE⊥AD交BC的延長線于點E.
(1)若∠B=35°,∠ACB=85°,求∠E得度數(shù).
(2)當(dāng)點P在線段AD上運動時,設(shè)∠B=α,∠ACB=β(β>α),求∠E得大。ㄓ煤α、β的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某路公交車從起點經(jīng)過A、B、C、D站到達終點,一路上下乘客如下表所示。(用正數(shù)表示上車的人數(shù),負數(shù)表示下車的人數(shù))
起點 | A | B | C | D | 終點 | |
上車的人數(shù) | 18 | 15 | 12 | 7 | 5 | 0 |
下車的人數(shù) | 0 | -3 | -4 | -10 | -11 |
(1)到終點下車還有_________ 人;
(2)車行駛在那兩站之間車上的乘客最多?_______站和________站;
(3)若每人乘坐一站需買票1元,問該車出車一次能收入多少錢?寫出算式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,第一個圖形是一個六邊形,第二個圖形是兩個六邊形組成,依此類推:
(1)寫出第n個圖形的頂點數(shù)(n是正整數(shù));
(2)第12個圖有幾個頂點?
(3)若有122個頂點,那么它是第幾個圖形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點的坐標為,過點作不軸的垂線交直于點以原點為圓心,的長為半徑斷弧交軸正半軸于點;再過點作軸的垂線交直線于點,以原點為圓心,以的長為半徑畫弧交軸正半軸于點;…按此作法進行下去,則的長是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,斜邊AB邊上的高CD與角平分線AE交于點F,經(jīng)過垂足D的直線分別交直線CA,BC于點M,N.
(1)若AC=3,BC=4,AB=5,求CD的長;
(2)當(dāng)∠AMN=32°,∠B=38°時,求∠MDB的度數(shù);
(3)當(dāng)∠AMN=∠BDN時,寫出圖中所有與∠CDN相等的角,并選擇其中一組進行證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com