【題目】有甲乙兩個玩具小汽車在筆直的240米跑道上進(jìn)行折返跑游戲,甲從點(diǎn)出發(fā),勻速在、之間折返跑,同時乙從點(diǎn)出發(fā),以大于甲的速度勻速在、之間折返跑.在折返點(diǎn)的時間忽略不計.
(1)若甲的速度為,乙的速度為,第一次迎面相遇的時間為,則與的關(guān)系式___________;
(注釋:當(dāng)兩車相向而行時相遇是迎面相遇,當(dāng)兩車在點(diǎn)相遇時也視為迎面相遇)
(2)如圖1,
①若甲乙兩車在距點(diǎn)20米處第一次迎面相遇,則他們在距點(diǎn)_______米第二次迎面相遇:
②若甲乙兩車在距點(diǎn)50米處第一次迎面相遇,則他們在距點(diǎn)__________米第二次迎面相遇;
(3)設(shè)甲乙兩車在距點(diǎn)米處第一次迎面相遇,在距點(diǎn)米處第二次迎面相遇.某同學(xué)發(fā)現(xiàn)了與的函數(shù)關(guān)系,并畫出了部分函數(shù)圖象(線段,不包括點(diǎn),如圖2所示).
①則_______,并在圖2中補(bǔ)全與的函數(shù)圖象(在圖中注明關(guān)鍵點(diǎn)的數(shù)據(jù));
②分別求出各部分圖象對應(yīng)的函數(shù)表達(dá)式.
【答案】(1);(2)①60②150 ;(3)①80,②當(dāng)0<x≤80時,y=3x;當(dāng)80≤x<120時,
【解析】
(1)根據(jù)相遇問題知識列出代數(shù)式整理即可;
(2)①當(dāng)他們第一次相遇時,他們一共行駛了1個全程,當(dāng)他們第二次迎面相遇時,他們共行駛了3個全程,從而找到甲走的路程即可;②和前面①一樣的方法算出即可;
(3)①當(dāng)他們第二次迎面相遇時,他們共行駛了3個全程,則240÷3=80,求出a的值,當(dāng)x>80時,則當(dāng)他們第二次迎面相遇時,距M點(diǎn)的距離為240-(3x-240)=480-3x米,從而補(bǔ)全函數(shù)圖像;②根據(jù)圖像上點(diǎn)的坐標(biāo)分別求出解析式即可.
(1) 甲的速度為,乙的速度為,第一次迎面相遇的時間為,
則,
∴ ;
(2)①當(dāng)他們第一次相遇時,他們一共行駛了1個全程,當(dāng)他們第二次迎面相遇時,他們共行駛了3個全程,
若甲乙兩車在距點(diǎn)20米處第一次迎面相遇,
則他們一共行駛一個全程時,甲走了20米,
當(dāng)他們第二次迎面相遇時,他們共行駛了3個全程,
∴甲走了20×3=60米,
則他們在距點(diǎn)60米第二次迎面相遇;
②若甲乙兩車在距點(diǎn)50米處第一次迎面相遇,
則他們一共行駛一個全程時,甲走了50米,
當(dāng)他們第二次迎面相遇時,他們共行駛了3個全程,
∴甲走了50×3=150米,
則他們在距點(diǎn)150米第二次迎面相遇;
(3)①當(dāng)他們第二次迎面相遇時,他們共行駛了3個全程,
則240÷3=80,
則a的值為80,
∵乙的速度大于甲的速度,
∴他們一共行駛一個全程時,甲走的路程<120米,
當(dāng)x>80時,
則當(dāng)他們第二次迎面相遇時,距M點(diǎn)的距離為240-(3x-240)=480-3x米,
補(bǔ)全函數(shù)圖像,如圖所示:
②當(dāng)0<x≤80時,
設(shè)函數(shù)解析式為y=kx+b,把(0,0),(80,240)代入得
,
解得;,
∴y=3x;
當(dāng)80≤x<120時,把(80,120),(120,120)代入得:
解得;,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)學(xué)生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實(shí)踐四個方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計,現(xiàn)從該校隨機(jī)抽取n名學(xué)生作為樣本,采用問卷調(diào)查的方式收集數(shù)據(jù)參與問卷調(diào)查的每名學(xué)生只能選擇其中一項(xiàng),并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中提供的信息,解答下列問題:
補(bǔ)全條形統(tǒng)計圖;
若該校共有學(xué)生2400名,試估計該校喜愛看電視的學(xué)生人數(shù).
若調(diào)查到喜愛體育活動的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)為A(0,1),矩形CDEF的頂點(diǎn)C、F在拋物線上,點(diǎn)D、E在x軸上,CF交y軸于點(diǎn)B(0,2),且矩形其面積為8,此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 xOy 中,拋物線 y ax2 bx +3a (a≠0)過點(diǎn) A(1,0).
(1)求拋物線的對稱軸;
(2)直線 y=-x+4 與 y 軸交于點(diǎn) B,與該拋物線的對稱軸交于點(diǎn) C,現(xiàn)將點(diǎn) B 向左平移 一個單位到點(diǎn) D,如果該拋物線與線段 CD有交點(diǎn),結(jié)合函數(shù)的圖象,求 a 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)在和時的函數(shù)值相等.
(1)求二次函數(shù)的解析式;
(2)若一次函數(shù)的圖象與二次函數(shù)的圖象都經(jīng)過點(diǎn)A,求m和k的值;
(3)設(shè)二次函數(shù)的圖象與x軸交于點(diǎn)B,C(點(diǎn)B在點(diǎn)C的左側(cè)),將二次函數(shù)的圖象在點(diǎn)B,C間的部分(含點(diǎn)B和點(diǎn)C)向左平移個單位后得到的圖象記為C,同時將(2)中得到的直線向上平移n個單位.請結(jié)合圖象回答:當(dāng)平移后的直線與圖象G有公共點(diǎn)時,n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠為了檢驗(yàn)甲、乙兩車間生產(chǎn)的同一款新產(chǎn)品的合格情況(尺寸范圍為176mm~185mm的產(chǎn)品為合格),隨機(jī)各抽取了20個樣品進(jìn)行檢測,過程如下:
收集數(shù)據(jù):(單位:mm)
甲車間:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180
乙車間:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183
整理數(shù)據(jù):
頻數(shù) 組別 | 165.5~170.5 | 170.5~175.5 | 175.5~180.5 | 180.5~185.5 | 185.5~190.5 | 190.5~195.5 |
甲車間 | 2 | 4 | 5 | 6 | 2 | 1 |
乙車間 | 1 | 2 | a | 6 | 2 | 0 |
分析數(shù)據(jù):
車間 | 平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 |
甲車間 | 180 | 185 | 180 | 43.1 |
乙車間 | 180 | 180 | 180 | 22.6 |
應(yīng)用數(shù)據(jù):
(1)計算甲車間樣品的合格率;
(2)估計乙車間生產(chǎn)的8000個該款新產(chǎn)品中合格產(chǎn)品有多少個?
(3)結(jié)合上述數(shù)據(jù)信息,請判斷哪個車間生產(chǎn)的新產(chǎn)品更好,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 y=x+1 與 y 軸交于點(diǎn) A1,以 OA1為邊,在 y 軸右側(cè)作正方形 OA1B1C1,延長 C1B1交直線 y=x+1 于點(diǎn) A2,再以 C1A2為邊作正方形,…,這些正方形與直線 y=x+1 的交點(diǎn)分別為 A1,A2,A3,…,An,則點(diǎn) Bn 的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,C分別在x軸、y軸上,四邊形ABCO是邊長為4的正方形,點(diǎn)D為AB的中點(diǎn),點(diǎn)P為OB上的一個動點(diǎn),連接DP,AP,當(dāng)點(diǎn)P滿足DP+AP的值最小時,直線AP的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小正方形的邊長都為1,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上.
(1)以點(diǎn)A為旋轉(zhuǎn)中心,將△ABC繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△AB1C1,畫出△AB1C1;
(2)畫出△ABC關(guān)于原點(diǎn)O成中心對稱的△A2B2C2,若點(diǎn)B的坐標(biāo)為(-2,-2),則點(diǎn)B2的坐標(biāo)為_________.
(3)若△A2B2C2可看作是由△AB1C1繞點(diǎn)P順時針旋轉(zhuǎn)90°得到的,則點(diǎn)P的坐標(biāo)為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com