【題目】某學(xué)校后勤人員到文具店給八年級學(xué)生購買考試專用文具包,該文具店規(guī)定一次性購買400個以上,可享受八折優(yōu)惠.若按八年級學(xué)生實際人數(shù)每人購買一個,不能享受八折優(yōu)惠,需付款1936;若再多買88個就可享受八折優(yōu)惠,并且同樣只需付款1936元求該校八年級學(xué)生的總?cè)藬?shù)和文具包的價格.

【答案】該校八年級學(xué)生的總?cè)藬?shù)為352人,文具包的價格為5.5

【解析】

設(shè)該校八年級學(xué)生的總?cè)藬?shù)為x人,分別用含x的代數(shù)式表示出享受優(yōu)惠前每個文具包的價格和享受八折優(yōu)惠后每個文具包的價格,再根據(jù)題意列出方程求解即可.

解:設(shè)該校八年級學(xué)生的總?cè)藬?shù)為x人,

根據(jù)題意得:, 解方程得:x=352,

經(jīng)檢驗:x=352是所列分式方程的根,且滿足題意,

x352(人),(元),

答:該校八年級學(xué)生的總?cè)藬?shù)為352人,文具包的價格為5.5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形中,于點于點,且、分別為的中點,(如圖)則等于(

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖矩形的對角線交于點,過點,且,連接,判斷四邊形的形狀并說明理由.

(2)如果題目中的矩形變?yōu)榱庑,結(jié)論應(yīng)變?yōu)槭裁矗空f明理由.

(3)如果題目中的矩形變?yōu)檎叫,結(jié)論又應(yīng)變?yōu)槭裁?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點DBC邊上,DE垂直平分AC邊,垂足為點E,若∠B=70°,且AB+BD=BC,則∠BAC的度數(shù)是( )

A.65°B.70°C.75°D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,點是邊上的點(與,兩點不重合),過點,,分別交,兩點,下列說法正確的是(

A. ,則四邊形是矩形

B. 垂直平分,則四邊形是矩形

C. ,則四邊形是菱形

D. 平分,則四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,點的延長線上,平分,則下列結(jié)論:;;④;⑤.其中正確的有________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下文字并解決問題:對于形如這樣的二次三項式,我們可以直接用公式法把它分解成的形式,但對于二次三項式,就不能直接用公式法分解了.此時,我們可以在中間先加上一項,使它與的和構(gòu)成一個完全平方式,然后再減去,則整個多項式的值不變.即:,像這樣,把一個二次三項式變成含有完全平方式的形式的方法,叫做配方法.

利用配方法因式分解:

如果,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,點是邊上一個動點,過作直線,設(shè)的平分線于點,交的外角平分線于點

探究:線段的數(shù)量關(guān)系并加以證明;

當點運動到何處,且滿足什么條件時,四邊形是正方形?

當點在邊上運動時,四邊形會是菱形嗎?若是,請證明,若不是,則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以正方形的四條邊為邊,向其內(nèi)部作等邊三角形,得到、、、,連接、、,若,則四邊形的面積為________

查看答案和解析>>

同步練習(xí)冊答案