【題目】如圖,Rt△ABC中,∠C=90°,∠B=30°,分別以點(diǎn)A和點(diǎn)B為圓心,大于AB的長為半徑作弧,兩弧相交于M、N兩點(diǎn),作直線MN,交BC于點(diǎn)D,連接AD.
(1)根據(jù)作圖判斷:△ABD的形狀是 ;
(2)若BD=10,求CD的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某商品的標(biāo)志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點(diǎn)A、B、C、D,得到四邊形ABCD,若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B、F、C、E在一條直線上,FB=CE,AB∥ED,AC∥FD;
(1)已知∠A=85°,∠ACE=115°,求∠B度數(shù);
(2)求證:AB=DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為6,面積是18,腰AC的垂直平分線EF分別交AC,AB于E,F點(diǎn),若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動點(diǎn),則△CDM的周長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(3,0),B(0,﹣1),連接AB,過點(diǎn)B的垂線BC,使BC=BA,則點(diǎn)C坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,且當(dāng)x=0和x=2時,y的值相等.直線y=3x﹣7與這條拋物線相交于兩點(diǎn),其中一點(diǎn)的橫坐標(biāo)是4,另一點(diǎn)是這條拋物線的頂點(diǎn)M.
(1)求這條拋物線的解析式;
(2)P為線段BM上一點(diǎn),過點(diǎn)P向x軸引垂線,垂足為Q.若點(diǎn)P在線段BM上運(yùn)動(點(diǎn)P不與點(diǎn)B、M重合),設(shè)OQ的長為t,四邊形PQAC的面積為S.求S與t之間的函數(shù)關(guān)系式及自變量t的取值范圍;
(3)在線段BM上是否存在點(diǎn)N,使△NMC為等腰三角形?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展“我最喜愛的一項(xiàng)體育活動”調(diào)查,要求每名學(xué)生必選且只能選一項(xiàng),現(xiàn)隨機(jī)抽查了m名學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.
請結(jié)合以上信息解答下列問題:
(1)m= ;
(2)請補(bǔ)全上面的條形統(tǒng)計圖;
(3)在圖2中,“乒乓球”所對應(yīng)扇形的圓心角的度數(shù)為 ;
(4)已知該校共有1200名學(xué)生,請你估計該校約有 名學(xué)生最喜愛足球活動.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在等腰三角形△ABC中,AC=BC,D、E分別為AB、BC上一點(diǎn),∠CDE=∠A.
(1)如圖①,若BC=BD,求證:CD=DE;
(2)如圖②,過點(diǎn)C作CH⊥DE,垂足為H,若CD=BD,EH=1,求DE﹣BE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+2與x軸、y軸分別交于A、B兩點(diǎn),OA:OB=.以線段AB為邊在第二象限內(nèi)作等腰Rt△ABC,∠BAC=90°.
(1)求點(diǎn)A的坐標(biāo)和k的值;
(2)求點(diǎn)C坐標(biāo);
(3)直線y=x在第一象限內(nèi)的圖象上是否存在點(diǎn)P,使得△ABP的面積與△ABC的面積相等?如果存在,求出點(diǎn)P坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com