【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊Ox軸上,OCy軸上,OA6OC4,PCBC.將矩形OABC繞點(diǎn)O以每秒45°的速度沿順時針方向旋轉(zhuǎn),則第2019秒時,點(diǎn)P的坐標(biāo)為(

A.3B.2,﹣1

C.,﹣3D.(﹣1,2

【答案】C

【解析】

將矩形OABC繞點(diǎn)O以每秒45°的速度沿順時針方向旋轉(zhuǎn),360°÷45°8,8秒循環(huán)一次,因為2019÷8252余數(shù)為3,推出第2019秒時,點(diǎn)P旋轉(zhuǎn)到如圖P′處,作C′EOCE,P′FC′E,利用等腰直角三角形的性質(zhì)即可解決問題.

∵將矩形OABC繞點(diǎn)O以每秒45°的速度沿順時針方向旋轉(zhuǎn),360°÷45°8

8秒循環(huán)一次,

2019÷8252余數(shù)為3,

∴第2019秒時,點(diǎn)P旋轉(zhuǎn)到如圖P′處,作C′EOCE,P′FC′E

由題意△P′C′F,△OEC′都是等腰直角三角形,

OEC′E×42,P′FC′F×2

P′,﹣3),

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有七張正面標(biāo)有數(shù)字﹣3,﹣2,﹣10,1,2,3的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗均后從中隨機(jī)抽取一張,記卡片上的數(shù)字為a,則使關(guān)于x的一元二次方程ax2﹣(2a1x+a20有兩個不相等的實(shí)數(shù)根,且分式方程的解為正數(shù)的概率為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明發(fā)現(xiàn)相機(jī)快門打開過程中,光圈大小變化如圖1所示,于是他繪制了如圖2所示的圖形.圖2中留個形狀大小都相同的四邊形圍成一個圓的內(nèi)接六邊形和一個小正六邊形,若PQ所在的直線經(jīng)過點(diǎn)M,PB=5cm,小正六邊形的面積為cm2,則該圓的半徑為________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,點(diǎn)EAB 的中點(diǎn),連接CE交⊙O于點(diǎn)F,連接AF并延長交BC于點(diǎn)H

1)若連接AO,試判斷四邊形AECO的形狀,并說明理由;

2)求證:AH是⊙O的切線;

3AB6,CH2,則AH的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC,以AB為直徑的圓OBC于點(diǎn)D,交AC于點(diǎn)E,過點(diǎn)DDFAC于點(diǎn)F,交AB的延長線于點(diǎn)G

1)求證:DFO的切線;

2)已知BD,CF2,求DFBG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD與正方形DEFG按如圖1放置,點(diǎn)A,D,G在同一條直線上,點(diǎn)ECD邊上,AD3,DE,連接AE,CG

1)線段AECC的關(guān)系為______;

2)將正方形DEFG繞點(diǎn)D順時針旋轉(zhuǎn)一個銳角后,如圖2,請問(1)中的結(jié)論是否仍然成立?請說明理由

3)在正方形DEFG繞點(diǎn)D順時針旋轉(zhuǎn)一周的過程中,當(dāng)∠AEC90°時,請直接寫出AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,過點(diǎn)A作⊙O的切線并在其上取一點(diǎn)C,連接OC交⊙O于點(diǎn)D,BD的延長線交ACE,連接AD

1)求證:CD2CEAC;

2)若AB4AC4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時停止運(yùn)動,則此時點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)為( 。

A.0B.2,0C.0D.3,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)C在線段AB上,(點(diǎn)C不與AB重合),分別以AC、BC為邊在AB同側(cè)作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點(diǎn)P

(觀察猜想)

AEBD的數(shù)量關(guān)系是   ;

②∠APD的度數(shù)為   

(數(shù)學(xué)思考)

如圖2,當(dāng)點(diǎn)C在線段AB外時,(1)中的結(jié)論①、②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明;

(拓展應(yīng)用)

如圖3,點(diǎn)E為四邊形ABCD內(nèi)一點(diǎn),且滿足∠AED=∠BEC90°,AEDEBECE,對角線ACBD交于點(diǎn)P,AC10,則四邊形ABCD的面積為   

查看答案和解析>>

同步練習(xí)冊答案