【題目】如圖1,以直角三角形的各邊邊邊分別向外作正三角形,再把較小的兩張正三角形紙片按圖2的方式放置在最大正三角形內(nèi).若知道圖中陰影部分的面積,則一定能求出(

A.直角三角形的面積B.較小兩個正三角形重疊部分的面積

C.最大正三角形的面積D.最大正三角形與直角三角形的面積差

【答案】B

【解析】

根據(jù)勾股定理得到c2=a2+b2,根據(jù)正方形的面積公式、長方形的面積公式計(jì)算即可.

設(shè)直角三角形的斜邊長為c,較長直角邊為b,較短直角邊為a,

由勾股定理得,c2=a2+b2

陰影部分的面積=c2-b2-a(c-b)=a2-ac+ab=a(a+b-c)

較小兩個正方形重疊部分的長=a(c-b),寬=a,

則較小兩個正方形重疊部分底面積=a(a+b-c),

知道圖中陰影部分的面積,則一定能求出

較小兩個正方形重疊部分的面積,

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點(diǎn)A、點(diǎn)B、點(diǎn)C均落在格點(diǎn)上.

(I)計(jì)算△ABC的邊AC的長為_____

(II)點(diǎn)P、Q分別為邊AB、AC上的動點(diǎn),連接PQ、QB.當(dāng)PQ+QB取得最小值時,請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出線段PQ、QB,并簡要說明點(diǎn)P、Q的位置是如何找到的_____(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)等邊三角形時發(fā)現(xiàn)了直角三角形的一個性質(zhì):直角三角形中,角所對的直角邊等于斜邊的一半。小明同學(xué)對以上結(jié)論作了進(jìn)一步探究.如圖1,在中,,則:.

探究結(jié)論:(1)如圖1,邊上的中線,易得結(jié)論:________三角形.

2)如圖2,在中,邊上的中線,點(diǎn)是邊上任意一點(diǎn),連接,在邊上方作等邊,連接.試探究線段之間的數(shù)量關(guān)系,寫出你的猜想加以證明.

拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)軸正半軸上的一動點(diǎn),以為邊作等邊,當(dāng)點(diǎn)在第一象內(nèi),且時,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個動點(diǎn).

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)P運(yùn)動到什么位置時,△PAB的面積有最大值?

(3)過點(diǎn)Px軸的垂線,交線段AB于點(diǎn)D,再過點(diǎn)PPEx軸交拋物線于點(diǎn)E,連結(jié)DE,請問是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市文化宮學(xué)習(xí)十九大有關(guān)優(yōu)先發(fā)展教育的精神,舉辦了為某貧困山區(qū)小學(xué)捐贈書包活動首次用2000元在商店購進(jìn)一批學(xué)生書包,活動進(jìn)行后發(fā)現(xiàn)書包數(shù)量不夠,又購進(jìn)第二批同樣的書包,所購數(shù)量是第一批數(shù)量的3倍,但單價貴了4元,結(jié)果第二批用了6300元.

(1)求文化官第一批購進(jìn)書包的單價是多少?

(2)商店兩批書包每個的進(jìn)價分別是68元和70元,這兩批書包全部售給文化宮后,商店共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線的部分圖象如圖所示,與x軸的一個交點(diǎn)坐標(biāo)為,拋物線的對稱軸是下列結(jié)論中:

;;方程有兩個不相等的實(shí)數(shù)根;拋物線與x軸的另一個交點(diǎn)坐標(biāo)為若點(diǎn)在該拋物線上,則

其中正確的有  

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣(x﹣a)(x﹣b),其中a<b,m、n(m<n)是方程1﹣(x﹣a)(x﹣b)=0的兩個根,則實(shí)數(shù)a、b、m、n的大小關(guān)系是(  )

A. a<m<n<b B. m<a<b<n C. a<m<b<n D. m<a<n<b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是求作AOB的角平分線的尺規(guī)作圖過程.

已知:如圖,鈍角AOB.求作:AOB的角平分線.

作法:

OAOB上,分別截取ODOE,使ODOE

分別以D、E為圓心,大于的長為半徑作弧,AOB內(nèi),兩弧交于點(diǎn)C

作射線OC.

所以射線OC就是所求作的AOB的角平分線.

在該作圖中蘊(yùn)含著幾何的證明過程:

可得:ODOE

可得:_________________

可知:OCOC

_______________(依據(jù):________________________

可得COD=∠COE(全等三角形對應(yīng)角相等)

OC就是所求作的AOB的角平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線的部分圖象如圖所示,與x軸的一個交點(diǎn)坐標(biāo)為,拋物線的對稱軸是下列結(jié)論中:

;方程有兩個不相等的實(shí)數(shù)根;拋物線與x軸的另一個交點(diǎn)坐標(biāo)為若點(diǎn)在該拋物線上,則

其中正確的有  

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

同步練習(xí)冊答案