【題目】綜合與實(shí)踐:
問題情境:矩形旋轉(zhuǎn)中的數(shù)學(xué)
已知在矩形中,,,以點(diǎn)為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)矩形,旋轉(zhuǎn)角為,得到矩形,點(diǎn)、點(diǎn)、點(diǎn)的對(duì)應(yīng)點(diǎn)分別為點(diǎn)、點(diǎn)、點(diǎn).
操作猜想:
(1)如圖①,當(dāng)點(diǎn)落在邊上時(shí),求線段的長(zhǎng)度;
深入探究:
(2)如圖②,當(dāng)點(diǎn)落在線段上時(shí),與相交于點(diǎn),連接,求線段的長(zhǎng)度;
(3)請(qǐng)從,兩題中任選一題作答,我選______題.
題:如圖③,設(shè)點(diǎn)為邊的中點(diǎn),連接,,,在矩形旋轉(zhuǎn)過程中,的面積是否存在最大值?若存在請(qǐng)直接寫出這個(gè)最大值;若不存在請(qǐng)說(shuō)明理由.
題:如圖④,設(shè)點(diǎn)為矩形對(duì)角線交點(diǎn),連接,,在矩形旋轉(zhuǎn)過程中,的面積是否存在最大值?若存在請(qǐng)直接寫出這個(gè)最大值;若不存在請(qǐng)說(shuō)明理由.
【答案】(1)CE= 2-;(2)DH=;(3)A題:存在最大值+1;B題:存在最大值.
【解析】
(1)由旋轉(zhuǎn)的性質(zhì)可得AE=AB,利用勾股定理可求出DE的長(zhǎng),即可得CE的長(zhǎng);
(2)如圖,由旋轉(zhuǎn)的性質(zhì)及矩形性質(zhì)可得AE=CD,∠AEF=∠B=90°,根據(jù)點(diǎn)落在線段上可得AE⊥CF,利用HL可證明△ACD≌△CAE,可得∠CAH=∠ACH,即可證明AH=CH,在Rt△ADH中,利用勾股定理列方程求出DH的長(zhǎng)即可;
(3)A題:如圖,連接PA,作BM⊥PE,交PE延長(zhǎng)線于M,由點(diǎn)P為FG中點(diǎn)可得PF=PG=1,利用勾股定理可得PA=PE=,即可得出S△BEP=PE·BM=BM,可得當(dāng)BM最大時(shí),△BEP的面積最大,根據(jù)三角形的三邊關(guān)系及直角三角形的性質(zhì)求出BM的最大值即可得答案;
B題:如圖,過點(diǎn)B作BM⊥FA,交FA延長(zhǎng)線于M,利用勾股定理可求出AF的長(zhǎng),根據(jù)矩形性質(zhì)可求出PF的長(zhǎng),可得出S△BFP=PF·BM,可得BM最大時(shí)△BFP的面積最大,利用三角形的三邊關(guān)系得出BM的最大值即可得答案.
(1)∵以點(diǎn)為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)矩形,得到矩形,,,
∴AE=AB=CD=2,AD=BC=1,
∴DE==,
∴CE=CD-DE=2-.
(2)以點(diǎn)為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)矩形,得到矩形,,,
∴AE=AB=CD=2,∠AEF
∵點(diǎn)落在線段上,
∴∠AEC=90°,
在Rt△ACD和Rt△CAE中,,
∴Rt△ACD≌Rt△CAE,
∴∠CAH=∠ACH,
∴AH=CH,
在Rt△ADH中,AH2=DH2+AD2,
∴(CD-DH)2=DH2+AD2,即(2-DH)2=DH2+12,
解得:DH=.
(3)A題:
如圖,連接PA,作BM⊥PE,交PE延長(zhǎng)線于M,
∵點(diǎn)P為GF中點(diǎn),
∴PG=PF=1,
∴PA=PE==,
∴S△BEP=PE·BM=BM,
∴當(dāng)BM最大時(shí),△BEP的面積最大,
∵BM≤BP,BP≤AB+AP=2+,
∴BM≤2+,即BM的最大值為2+,
∴△BEP的面積的最大值為:BM=×(2+)=+1.
B題:
如圖,過點(diǎn)B作BM⊥FA,交FA延長(zhǎng)線于M,
∵AB=2,BC=1,矩形AEFG由矩形ABCD旋轉(zhuǎn)所得,
∴AF==,
∴PF=AF=,
∴S△BFP=PF·BM=BM,
∴當(dāng)BM最大時(shí),△BFP的面積最大,
∵BM≤AB,
∴BM的最大值為AB=2,
∴△BFP的面積的最大值為BM=×2=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為測(cè)量大樓的高度,從距離大樓底部30米處的,有一條陡坡公路,車輛從沿坡度,坡面長(zhǎng)13米的斜坡到達(dá)后,觀測(cè)到大樓的頂端的仰角為30°,則大樓的高度為( )米.
(精確到0.1米,,)
A.26.0B.29.2C.31.1D.32.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,點(diǎn)O是對(duì)角線AC的中點(diǎn),過點(diǎn)O作AC的垂線,分別交AD、BC于點(diǎn)E、F,連結(jié)AF、CE.
(1)求證:△AOE≌△COF.
(2)試判斷四邊形AFCE的形狀,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市高新區(qū)某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務(wù),按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的售價(jià)為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,y與x滿足如下關(guān)系:.
(1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為60件?
(2)設(shè)第x天生產(chǎn)的產(chǎn)品成本為P元/件,P與x的函數(shù)關(guān)系圖象如圖,工人甲第x天創(chuàng)造的利潤(rùn)為W元,求W與x的函數(shù)關(guān)系式,第幾天時(shí),利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:AB是⊙O的直徑,P是OA上一點(diǎn),過點(diǎn)P作⊙O的非直徑的弦CD.
(1)若PA=2,PB=10,∠CPB=30°,求CD長(zhǎng);
(2)求證:PCPD=PAPB;
(3)設(shè)⊙O的直徑為8,若PC、PD是方程,求m的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】第十一屆全國(guó)少數(shù)民族傳統(tǒng)體育運(yùn)動(dòng)會(huì)于2019年9月8日至16日在鄭州舉行,據(jù)了解,該賽事每四年舉辦一屆,是我國(guó)規(guī)格最高、規(guī)模最大的綜合性民族體育盛會(huì).其中,花炮、押加、民族式摔跤三個(gè)項(xiàng)目的比賽在鄭州大學(xué)主校區(qū)進(jìn)行.如圖,鐘樓是鄭州大學(xué)主校區(qū)標(biāo)志性建筑物之一,是鄭大的“第一高度”,寓意來(lái)自五湖四海的鄭大人的團(tuán)結(jié)和凝聚.小剛站在鐘樓前C處測(cè)得鐘樓頂A的仰角為53°,小強(qiáng)站在對(duì)面的教學(xué)樓三樓上的D處測(cè)得鐘樓頂A的仰角為30°,此時(shí),兩人的水平距離EC為38m.已知教學(xué)樓三樓所在的高度為10m,根據(jù)測(cè)得的數(shù)據(jù),計(jì)算鐘樓AB的高度.(結(jié)果保留整數(shù).參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,頂點(diǎn)為A(,1)的拋物線經(jīng)過坐標(biāo)原點(diǎn)O,與x軸交于點(diǎn)B.
(1)求拋物線對(duì)應(yīng)的二次函數(shù)的表達(dá)式;
(2)過B作OA的平行線交y軸于點(diǎn)C,交拋物線于點(diǎn)D,求證:△OCD≌△OAB;
(3)在x軸上找一點(diǎn)P,使得△PCD的周長(zhǎng)最小,求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A、B是線段MN上的兩點(diǎn),MN=4,MA=1,MB>1.以A為中心順時(shí)針旋轉(zhuǎn)點(diǎn)M,以B為中心逆時(shí)針旋轉(zhuǎn)點(diǎn)N,使M、N兩點(diǎn)重合成一點(diǎn)C,構(gòu)成△ABC,設(shè)AB=x.若以點(diǎn)B為圓心,1.6為半徑作圓⊙B,使點(diǎn)M和點(diǎn)N都在⊙B外,則x的取值范圍是( 。
A.1<x<2B.0.6<x<1.6C.1<x<1.6D.1<x<1.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 實(shí)施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)本次調(diào)查中C類女生有______名,D類男生有______名;將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)計(jì)算扇形統(tǒng)計(jì)圖中D所占的圓心角是______;
(3)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com