【題目】如圖,四邊形ABCD是邊長為a的正方形,點(diǎn)G,E分別是邊AB,BC的中點(diǎn),∠AEF=90°,且EF交正方形外角的平分線CF于點(diǎn)F.
(1)證明:∠BAE=∠FEC;
(2)證明:△AGE≌△ECF;
(3)求△AEF的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18℃的條件下生長最快的新品種.如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時間x(小時)變化的函數(shù)圖象,其中BC段是雙曲線y=的一部分.請根據(jù)圖中信息解答下列問題:
(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18℃的時間有多少小時?
(2)求k的值;
(3)當(dāng)棚內(nèi)溫度不低于16℃時,該蔬菜能夠快速生長,請問這天該蔬菜能夠快速生長多長時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB=.
利用數(shù)軸,根據(jù)數(shù)形結(jié)合思想,回答下列問題:
(1)數(shù)軸上表示2和6兩點(diǎn)之間的距離是_____ ,數(shù)軸上表示1和的兩點(diǎn)之間的距離為__________
(2)數(shù)軸上表示和1兩點(diǎn)之間的距離為_____,數(shù)軸上表示和兩點(diǎn)之間的距離為_________
(3)若表示一個實(shí)數(shù),且,化簡,
(4)的最小值為_______ ,
的最小值為__________ .
(5)的最大值為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(背景)某班在一次數(shù)學(xué)實(shí)踐活動中,對矩形紙片進(jìn)行折疊實(shí)踐操作,并將其產(chǎn)生的數(shù)學(xué)問題進(jìn)行相關(guān)探究. (操作)如圖,在矩形ABCD中,AD=6,AB=4,點(diǎn)P是BC邊上一點(diǎn),現(xiàn)將△APB沿AP對折,得△APM,顯然點(diǎn)M位置隨P點(diǎn)位置變化而發(fā)生改變
(問題)試求下列幾種情況下:點(diǎn)M到直線CD的距離
(1)∠APB=75°;
(2)P與C重合;
(3)P是BC的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在ABCD中,∠ADC,∠DAB的平分線DF,AE分別與線段BC相交于點(diǎn)F,E,DF與AE相交于點(diǎn)G.
(1)求證:AE⊥DF;
(2)若AD=10,AB=6,AE=4,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)2,3,5,5,5,6,9.若去掉一個數(shù)據(jù)5,則下列統(tǒng)計(jì)量中,發(fā)生變化的是( )
A. 平均數(shù) B. 眾數(shù)
C. 中位數(shù) D. 方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(背景)某班在一次數(shù)學(xué)實(shí)踐活動中,對矩形紙片進(jìn)行折疊實(shí)踐操作,并將其產(chǎn)生的數(shù)學(xué)問題進(jìn)行相關(guān)探究. (操作)如圖,在矩形ABCD中,AD=6,AB=4,點(diǎn)P是BC邊上一點(diǎn),現(xiàn)將△APB沿AP對折,得△APM,顯然點(diǎn)M位置隨P點(diǎn)位置變化而發(fā)生改變
(問題)試求下列幾種情況下:點(diǎn)M到直線CD的距離
(1)∠APB=75°;
(2)P與C重合;
(3)P是BC的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知A點(diǎn)從(1,0)點(diǎn)出發(fā),以每秒1個單位長的速度沿著x軸的正方向運(yùn)動,經(jīng)過t秒后,以O(shè)、A為頂點(diǎn)作菱形OABC,使B、C點(diǎn)都在第一象限內(nèi),且∠AOC=60°,又以P(0,4)為圓心,PC為半徑的圓恰好與OA所在的直線相切,則t= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以Rt△ABC的斜邊AB,直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB的中點(diǎn),DE,AB相交于點(diǎn)G,若∠BAC=300,下列結(jié)論:①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④△DBF≌△EFA.其中正確結(jié)論的序號是( )
A. ②④ B. ①③ C. ①③④ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com