【題目】201959日,美國政府宣布自2019510日起,對中國進口的億美元清單商品加征的關稅稅率由提高到.為了解我校師生對此事的關注度,學生張明采取隨機抽樣的方法進行問卷調查,繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題: 我校師生對加征關稅稅率了解情況條形統(tǒng)計圍我校師生對加征關稅稅率了解情況扇形統(tǒng)計圍

本次調查的人數(shù)有 人, 在扇形統(tǒng)計圖中,的值是 ;請將條形統(tǒng)計圖補充完整.

在被調查的教師中,有女共名教師愿意接受深入調查,現(xiàn)要從這名教師中隨機抽取名教

師進行深入調查,請畫樹狀圖或者列表求出所抽取的名教師恰好是名男教師和名女教師的概率.

【答案】150;30;補充圖見解析(2)圖見解析;

【解析】

1)根據(jù)初二人數(shù)以及所占百分比即可求得總人數(shù);讓初一的人數(shù)除以總人數(shù)即可求得初一所占百分比;根據(jù)總人數(shù)以及初三、教師所占百分比求得其人數(shù)即可畫出條形圖;

2)利用樹狀圖將所有可能的結果列舉出來,從中確定出一男一女的可能有幾種,根據(jù)概率的定義兩數(shù)相除即可得解.

解:(1人;因為,所以;初三人數(shù):人;教師人數(shù):人;補全條形圖如下圖:

(2)

∴由樹狀圖可知,共有六種等可能的結果,其中2名教師恰好11女的有四種可能

∴教師接受深入調查抽取2名教師恰好11女的概率

故答案是:(150;30;補充圖見解析(2)圖見解析;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線軸交于、兩點,,交軸于點,對稱軸是直線

1)求拋物線的解析式及點的坐標;

2)連接,是線段上一點,關于直線的對稱點正好落在上,求點的坐標;

3)動點從點出發(fā),以每秒2個單位長度的速度向點運動,過軸的垂線交拋物線于點,交線段于點.設運動時間為)秒.若相似,請求出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織大手拉小手,義賣獻愛心活動,計劃購買黑白兩種顏色的文化衫進行手繪設計后出售,并將所獲利潤全部捐給山區(qū)困難孩子.已知該學校從批發(fā)市場花4800元購買了 黑白兩種顏色的文化衫200件,每件文化衫的批發(fā)價及手繪后的零售價如表:

批發(fā)價()

零售價()

文化衫

25

45

20

35

(1)學校購進黑.白文化衫各幾件?

(2)通過手繪設計后全部售出,求該校這次義賣活動所獲利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以點為圓心,為半徑作優(yōu)弧,連接,,且,在弧上任意取點(在點的順時針方向)且使,以為邊向弧內作正三角形

1)發(fā)現(xiàn):不論點在弧上什么位置,點與點的距離不變,點與點的距離是_____;點到直線的最大距離是_______

2)思考:當點在直線上時,求點的距離,在備用圖1中畫出示意圖,并寫出計算過程.

3)探究:當垂直或平行時,直接寫出點的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%

1)設小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關系式,并確定自變量x的取值范圍.

2)當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?

3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進價×銷售量)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一塊矩形紙片ABCD,AB=8,AD=6.將紙片折疊,使得AD邊落在AB邊上,折痕為AE,再將△AED沿DE向右翻折,AEBC的交點為F,則△CEF的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,的中點。在射線上任意取一點,連接,將線段繞點逆時針方向旋轉80°,點的對應點是點,連接.

1)如圖1,當點落在射線上時,

_________________°

②直線與直線的位置關系是______________________。

2)如圖2,當點落在射線的左側時,試判斷直線與直線的位置關系,并證明你的結論。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,過點C作⊙O的切線,交直徑AB的延長于點D,若∠ABC=65°,則∠D的度數(shù)是(

A.25°B.30°C.40°D.50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的半徑為5ABC是⊙O的內接三角形,AB8,.過點B作⊙O的切線BD,過點AADBD,垂足為D

1)求證:∠BAD+C90°

2)求線段AD的長.

查看答案和解析>>

同步練習冊答案