【題目】如圖,四邊形ABCD是菱形,對角線AC、BD相交于點O,DH⊥AB于H, 連接OH,求證:∠DHO=∠DCO.

【答案】證明:∵四邊形ABCD是菱形, ∴OD=OB,∠COD=90°,
∵DH⊥AB,
∴OH= BD=OB,
∴∠OHB=∠OBH,
又∵AB∥CD,
∴∠OBH=∠ODC,
在Rt△COD中,∠ODC+∠DCO=90°,
在Rt△DHB中,∠DHO+∠OHB=90°,
∴∠DHO=∠DCO.

【解析】根據(jù)菱形的對角線互相平分可得OD=OB,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得OH=OB,然后根據(jù)等邊對等角求出∠OHB=∠OBH,根據(jù)兩直線平行,內錯角相等求出∠OBH=∠ODC,然后根據(jù)等角的余角相等證明即可.
【考點精析】根據(jù)題目的已知條件,利用菱形的性質的相關知識可以得到問題的答案,需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知代數(shù)式x﹣3y的值是﹣5,則代數(shù)式2x﹣6y﹣1的值是(
A.﹣6
B.﹣7
C.﹣11
D.﹣12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠MON=30°,點A1 , A2 , A3 , …在射線ON上,點B1 , B2 , B3 , …在射線OM上,△A1B1A2 , △A2B2A3 , △A3B3A4 , …均為等邊三角形,若OA1=2,則△A5B5A6的邊長為(
A.8
B.16
C.24
D.32

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】順次連接矩形四邊中點所得的四邊形一定是(
A.正方形
B.矩形
C.菱形
D.等腰梯形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一公路上依次有A、B、C城市,AB城市之間的距離為10千米,BC城市之間的距離為140千米,一輛快車和一輛慢車分別從AB兩城同時出發(fā)駛向C城,快車每小時行駛80千米,慢車每小時行駛60千米.

1)出發(fā)后經過多長時間快車追上慢車?

2)出發(fā)后經過多長時間兩車相距5千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,矩形OABC的頂點B在第一象限,點Cx軸上,點Ay軸上,D、E分別是ABOA中點.過點D的雙曲線BC交于點G.連接DC,FDC上,且DFFC=3:1,連接DE,EF.若△DEF的面積為6,則k的值為( 。

A. B. C. 6 D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在□ABCD中,連接對角線, 平分線于點, 平分線于點 、交于點,點上一點,且。

(1)如圖1,若是等邊三角形, ,求□ABCD的面積;

(2)如圖2,若是等腰直角三角形, ,求證: 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)填空:

(ab)(ab)________

(ab)(a2abb2)________;

(ab)(a3a2bab2b3)________

(2)猜想:

(ab)(an1an2ban3b2abn2bn1)________(其中n為正整數(shù),且n2)

(3)利用(2)猜想的結論計算:

2928272221;

210292823222.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

116÷23×4

24÷

314[2323

查看答案和解析>>

同步練習冊答案