【題目】如圖,AO平分∠BAC,AO⊥BC,DE⊥BC,GH⊥BC,垂足分別為O、E、H,且DO∥AC,∠B=43°,則圖中角的度數(shù)為47°的角的個數(shù)是( 。
A. 5 B. 6 C. 7 D. 8
【答案】A
【解析】
依據(jù)AO平分∠BAC,AO⊥BC,可得∠BAO=∠CAO,∠AOB=∠AOC=90°,進(jìn)而得出DB=DO,依據(jù)DE⊥BO,可得ED平分∠BDO,依據(jù)∠B=43°,可得∠BDE=47°,即可得出∠BAO=∠EDO=∠AOD=∠CAO=∠CGH=47°.
∵AO平分∠BAC,AO⊥BC,
∴∠BAO=∠CAO,∠AOB=∠AOC=90°,
∴∠B=∠C,
∵DO∥AC,
∴∠BOD=∠C,
∴∠B=∠BOD,
∴DB=DO,
又∵DE⊥BO,
∴ED平分∠BDO,
∵∠B=43°,
∴∠BDE=47°,
∴∠BAO=∠EDO=∠AOD=∠CAO=∠CGH=47°,
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在圖(1)中編號①②③④的四個三角形中,關(guān)于y軸對稱的兩個三角形的編號為_________;關(guān)于x軸對稱的兩個三角形的編號為___________;
(2)在圖(2)中,畫出ΔABC關(guān)于x軸對稱的圖形ΔA1B1C1。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=60°,點(diǎn)F為邊AD上一點(diǎn),連接BF交對角線AC于點(diǎn)G.
(1)如圖1,已知CF⊥AD于F,菱形的邊長為6,求線段FG的長度;
(2)如圖2,已知點(diǎn)E為邊AB上一點(diǎn),連接CE交線段BF于點(diǎn)H,且滿足∠FHC=60°,CH=2BH,求證:AH⊥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+4與x軸、y軸分別交于點(diǎn)A、點(diǎn)B,點(diǎn)D在y軸的負(fù)半軸上,若將△DAB沿直線AD折疊,點(diǎn)B恰好落在x軸正半軸上的點(diǎn)C處.
(1)求AB的長和點(diǎn)C的坐標(biāo);
(2)求直線CD的解析式;
(3)y軸上是否存在一點(diǎn)P,使得S△PAB=,若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,則下列結(jié)論:
①關(guān)于x的一元二次方程ax2+bx+c=0的根是﹣1,3;②abc>0;③a+b=c﹣b;④y最大值=c;⑤a+4b=3c中正確的有_____(填寫正確的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋里裝有分別標(biāo)有漢字“書”、“ 香”、“ 歷”、“ 城”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻.
(1)若從中任取一個球,球上的漢字剛好是 “書”的概率為__________.
(2)從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表的方法,求取出的兩個球上的漢字能組成“歷城”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們經(jīng)濟(jì)收入的不斷提高,汽車已越來越多地進(jìn)入到各個家庭.某大型超市為緩解停車難問題,建筑設(shè)計(jì)師提供了樓頂停車場的設(shè)計(jì)示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標(biāo)志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ ABC 和△ADE都是等邊三角形,點(diǎn) B 在 ED 的延長線上.
(1)求證:△ABD≌△ACE.
(2)求證:AE+CE=BE.
(3)求∠BEC 的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com