【題目】某廠工人小王某月工作的部分信息如下:
信息一:工作時間:每天上午,下午,每月天;
信息二:生產(chǎn)甲、乙兩種產(chǎn)品,并且按規(guī)定每月生產(chǎn)甲產(chǎn)品的件數(shù)不少于件.
生產(chǎn)產(chǎn)品件數(shù)與所用時間之間的關(guān)系見下表:
生產(chǎn)甲產(chǎn)品數(shù)(件) | 生產(chǎn)乙產(chǎn)品數(shù)(件) | 所用時間 (分) |
信息三:按件計酬:每生產(chǎn)一件甲產(chǎn)品可得元,每生產(chǎn)一件乙產(chǎn)品可得元.
根據(jù)以上信息,回答下列問題:
(1)小王每生產(chǎn)一件甲種產(chǎn)品,每生產(chǎn)一件乙種產(chǎn)品分別需要多少分鐘;
(2)小王該月最多能得多少元,此時生產(chǎn)甲、乙兩種產(chǎn)品分別多少件.
【答案】(1)生產(chǎn)一件甲產(chǎn)品需要15分,生產(chǎn)一件乙產(chǎn)品需要20分;(2)小王該月最多能得3288元,此時生產(chǎn)甲、乙兩種產(chǎn)品分別60,555件.
【解析】
(1)設(shè)生產(chǎn)一件甲種產(chǎn)品需x分,生產(chǎn)一件乙種產(chǎn)品需y分,列出方程組,利用加減消元法求出x,y的值.
(2)設(shè)生產(chǎn)甲種產(chǎn)品用x分,則生產(chǎn)乙種產(chǎn)品用(25×8×60x)分,分別求出甲乙兩種生產(chǎn)多少件產(chǎn)品.
解:(1)設(shè)生產(chǎn)一件甲種產(chǎn)品需x分,生產(chǎn)一件乙種產(chǎn)品需y分.由題意得:
,
解這個方程組得:,
答:生產(chǎn)一件甲產(chǎn)品需要15分,生產(chǎn)一件乙產(chǎn)品需要20分.
(2)設(shè)生產(chǎn)甲種產(chǎn)品共用x分,則生產(chǎn)乙種產(chǎn)品用(25×8×60-x)分.
則生產(chǎn)甲種產(chǎn)品件,生產(chǎn)乙種產(chǎn)品件.
∴w總額=3×+5.6×=0.08x+3360,
又≥60,得x≥900,
∵,則w隨著x的增大而減小,
∴當(dāng)x=900時w取得最大值,此時w=-0.08×900+3360=3288(元),
此時甲有:=60(件),
乙有:=555(件),
答:小王該月最多能得3288元,此時生產(chǎn)甲、乙兩種產(chǎn)品分別60,555件.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以AB為直徑的交BD于點C,交AD于點E,于點G,連接FE,FC.
求證:GC是的切線;
填空:
若,,則的面積為______.
當(dāng)的度數(shù)為______時,四邊形EFCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,經(jīng)過點A(-4,4)的拋物線y=ax2+bx與x軸相交于點B(-3,0).
(1)求拋物線的解析式;
(2)如圖1,過點A作AH⊥x軸,垂足為H,平行于y軸的直線交線段AO于點Q,交拋物線于點P,當(dāng)四邊形AHPQ為平行四邊形時,求∠AOP的度數(shù);
(3)如圖2,,試探究:在拋物線上是否存在點C,使∠CAO=∠BAO?若存在,請求出直線AC解析式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知為等邊三角形,在的延長線上,為線段上的一點,.
(1)如圖,求證:;
(2)如圖,過點作于點,交于點,當(dāng)時,在不添加任何輔助線的情況下,直接寫出圖中所有的等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司實行年工資制,職工的年工資由基礎(chǔ)工資、住房補貼和醫(yī)療費三項組成,具體規(guī)定如下:
項目 | 第一年的工資(萬元) | 一年后的計算方法 |
基礎(chǔ)工資 | 1 | 每年的增長率相同 |
住房補貼 | 0.04 | 每年增加0.04 |
醫(yī)療費 | 0.1384 | 固定不變 |
(1)設(shè)基礎(chǔ)工資每年增長率為x,用含x的代數(shù)式表示第三年的基礎(chǔ)工資為 萬元;
(2)某人在公司工作了3年,他算了一下這3年拿到的住房補貼和醫(yī)療費正好是這3年基礎(chǔ)工資總額的18 %,問基礎(chǔ)工資每年的增長率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與直線交于點與軸交于點,點在軸上,過點作軸于點,交于點,交于.
(1)求直線的解析式和點坐標(biāo).
(2)求①的面積與的關(guān)系式.并求出當(dāng)的面積為時,點坐標(biāo).在軸上確定點,使得的面積等于面積,直接寫出點的坐標(biāo);
②若直線將分成面積相等的兩部分,求的值.
③若是直線上一點,點是直線上一點,使得當(dāng)沿著折疊后與重合,請直接寫出點和點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(定義學(xué)習(xí))
定義:如果四邊形有一組對角為直角,那么我們稱這樣的四邊形為“對直四邊形”
(判斷嘗試)
在①梯形;②矩形:③菱形中,是“對直四邊形”的是哪一個. (填序號)
(操作探究)
在菱形ABCD中,于點E,請在邊AD和CD上各找一點F,使得以點A、E、C、F組成的四邊形為“對直四邊形”,畫出示意圖,并直接寫出EF的長,
(實踐應(yīng)用)
某加工廠有一批四邊形板材,形狀如圖所示,若AB=3米,AD=1米,
.現(xiàn)根據(jù)客戶要求,需將每張四邊形板材進(jìn)一步分割成兩個等腰三角形板材和一個“對直四邊形"板材,且這兩個等腰三角形的腰長相等,要求材料充分利用無剩余.求分割后得到的等腰三角形的腰長,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對應(yīng)值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四個結(jié)論:
(1)二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
(2)拋物線與y軸交點為(0,-3);
(3)二次函數(shù)y=ax2+bx+c 的圖像對稱軸是x=1;
(4)本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結(jié)論的個數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是∠AOB的平分線上一點,EC⊥OA,ED⊥OB,垂足分別為C、D.
求證:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是線段CD的垂直平分線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com