【題目】如圖所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BF平分∠ABC,交AD于E,若AE=13,求AF的長(zhǎng)度.

【答案】解:∵∠BAC=90°,

∴∠ABF+∠AFB=90°,

又∵AD⊥BC,

∴∠ADB=90°,

∴∠EBD+∠BED=90°,

又∵BF平分∠ABC,

∴∠ABF=∠EBD,

∴∠AFB=∠BED,

又∵∠AEF=∠BED,

∴∠AEF=∠AFB,

∴AE=AF,

∵AE=13,

∴AF=13.


【解析】根據(jù)三角形內(nèi)角和定理和角平分線性質(zhì)得到∠AEF=∠AFB,根據(jù)等角對(duì)等邊得到AE=AF,求出AF的長(zhǎng)度.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解三角形的內(nèi)角和外角(三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,信號(hào)塔PQ座落在坡度i=1:2的山坡上,其正前方直立著一警示牌.當(dāng)太陽(yáng)光線與水平線成60°角時(shí),測(cè)得信號(hào)塔PQ落在斜坡上的影子QN長(zhǎng)為米,落在警示牌上的影子MN長(zhǎng)為3米,求信號(hào)塔PQ的高.(結(jié)果不取近似值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】五邊形的外角和是_______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元一次方程2x15的解為( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下各組數(shù)分別是三條線段的長(zhǎng)度其中可以構(gòu)成三角形的是(

A. 1,3,4 B. 1,2,3 C. 6,6,10 D. 1,4,6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O與RtABC的直角邊AC和斜邊AB分別相切于點(diǎn)C、D,與邊BC相交于點(diǎn)F,OA與CD相交于點(diǎn)E,連接FE并延長(zhǎng)交AC邊于點(diǎn)G.

(1)求證:DFAO;

(2)若AC=6,AB=10,求CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)F為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,BE=BF,連接AE,EF和CF.

(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠EFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1.格點(diǎn)三角形ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)A、C的坐標(biāo)分別是(﹣4,6),(﹣1,4).

(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;

(2)請(qǐng)畫出ABC關(guān)于x軸對(duì)稱的A1B1C1;

(3)請(qǐng)?jiān)趛軸上求作一點(diǎn)P,使PB1C的周長(zhǎng)最小,并寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)多邊形的內(nèi)角和為1080°,則這個(gè)多邊形為( 

A. 七邊形 B. 八邊形 C. 九邊形 D. 十邊形

查看答案和解析>>

同步練習(xí)冊(cè)答案