【題目】如圖,在Rt△ABC中,∠B=90°,AC=10,∠C=30°點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(t>0),過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)DF= ;(用含t的代數(shù)式表示)
(2)求證:△AED≌△FDE;
(3)當(dāng)t為何值時(shí),△DEF是等邊三角形?說(shuō)明理由;
(4)當(dāng)t為何值時(shí),△DEF為直角三角形?(請(qǐng)直接寫出t的值.)
【答案】(1)t;(2)證明見解析;(3);(4) 或4.
【解析】
(1)由∠DFC=90°,∠C=30°,證出DF=t;
(2)證明得DF∥AB,所以∠AED=∠FDE,然后可得△AED≌△FDE;
(3)先證明四邊形AEFD為平行四邊形.得出AB=5,AD=AC-DC=10-2t,若△DEF為等邊三角形,△EDA是等邊三角形,得出AE=AD,t=10-2t,求出t=;
(4)因?yàn)?/span>△AED≌△FDE,所以當(dāng)△DEF為直角三角形時(shí),△EDA是直角三角形,然后分情況討論即可求解.
解:(1)∵DF⊥BC,
∴∠CFD=90°.
在Rt△CDF中,∠CFD=90°,∠C=30°,CD=2t,
∴DF=CD=t.
故答案為:t.
(2)證明:∵∠CFD=90°,∠B=90°,
∴DF∥AB,
∴∠AED=∠FDE.
在△AED和△FDE中,AF=FD=t,∠AED=∠FDE,DE=DE,
∴△AED≌△FDE(SAS).
(3)∵△AED≌△FDE,
∴當(dāng)△DEF是等邊三角形時(shí),△EDA是等邊三角形.
∵∠A=90°﹣∠C=60°,
∴AD=AE.
∵AE=t,AD=AC﹣CD=10﹣2t,
∴t=10﹣2t,
∴t=,
∴當(dāng)t為時(shí),△DEF是等邊三角形.
(4)∵△AED≌△FDE,
∴當(dāng)△DEF為直角三角形時(shí),△EDA是直角三角形.
當(dāng)∠AED=90°時(shí),AD=2AE,即10﹣2t=2t,
解得:t=;
當(dāng)∠ADE=90°時(shí),AE=2AD,即t=2(10﹣2t),
解得:t=4.
綜上所述:當(dāng)t為或4時(shí),△DEF為直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB交x軸于點(diǎn)A(5,0),交y軸于點(diǎn)B,AO是⊙M的直徑,其半圓交AB于點(diǎn)C,且AC=3.取BO的中點(diǎn)D,連接CD、MD和OC.
(1)求證:CD是⊙M的切線;
(2)二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)D、M、A,其對(duì)稱軸上有一動(dòng)點(diǎn)P,連接PD、PM,求△PDM的周長(zhǎng)最小時(shí)點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,當(dāng)△PDM的周長(zhǎng)最小時(shí),拋物線上是否存在點(diǎn)Q,使S△QAM= S△PDM?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一條直線過(guò)點(diǎn)(0,4),且與拋物線y= x2交于A,B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)是﹣2.
(1)求這條直線的函數(shù)關(guān)系式及點(diǎn)B的坐標(biāo).
(2)在x軸上是否存在點(diǎn)C,使得△ABC是直角三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(3)過(guò)線段AB上一點(diǎn)P,作PM∥x軸,交拋物線于點(diǎn)M,點(diǎn)M在第一象限,點(diǎn)N(0,1),當(dāng)點(diǎn)M的橫坐標(biāo)為何值時(shí),MN+3MP的長(zhǎng)度最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心,大于AB的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)M,N,作直線MN,交BC于點(diǎn)D,連接AD.若△ADC的周長(zhǎng)為10,AB=7,則△ABC的周長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△DAC和△EBC均是等邊三角形,AE、BD分別與CD、CE交于點(diǎn)M、N,且A、C、B在同一直線上,有如下結(jié)論:①△ACE≌△DCB;②CM=CN;③AC=DN;④PC平分∠APB;⑤∠APD=60°,其中正確結(jié)論有( 。
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中錯(cuò)誤的是( )
A.平行四邊形的對(duì)角線互相平分
B.有兩對(duì)鄰角互補(bǔ)的四邊形為平行四邊形
C.對(duì)角線互相平分的四邊形是平行四邊形
D.一組對(duì)邊平行,一組對(duì)角相等的四邊形是平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【發(fā)現(xiàn)證明】如圖1,點(diǎn)E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.
小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,通過(guò)證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.
(1)【類比引申】如圖2,點(diǎn)E,F(xiàn)分別在正方形ABCD的邊CB,CD的延長(zhǎng)線上,∠EAF=45°,連接EF,請(qǐng)根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF,BE,DF之間的數(shù)量關(guān)系,并證明;
(2)【聯(lián)想拓展】如圖3,如圖,∠BAC=90°,AB=AC,點(diǎn)E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】八年級(jí)(1)班學(xué)生在完成課題學(xué)習(xí)“體質(zhì)健康測(cè)試中的數(shù)據(jù)分析”后,利用課外活動(dòng)時(shí)間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠(yuǎn)、長(zhǎng)跑、鉛球中選一項(xiàng)進(jìn)行訓(xùn)練,訓(xùn)練后都進(jìn)行了測(cè)試.現(xiàn)將項(xiàng)目選擇情況及訓(xùn)練后籃球定時(shí)定點(diǎn)投籃測(cè)試成績(jī)整理后作出如下統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)上面提供的信息回答下列問(wèn)題:
(1)扇形圖中跳繩部分的扇形圓心角為度,該班共有學(xué)生人,訓(xùn)練后籃球定時(shí)定點(diǎn)投籃平均每個(gè)人的進(jìn)球數(shù)是 .
(2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進(jìn)行測(cè)試,請(qǐng)用列表或畫樹形圖的方法求恰好選中兩名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD.
(1)如圖1,∠A、∠E、∠C的數(shù)量關(guān)系為 .
(2)如圖2,若∠A=50°,∠F=115°,求∠C﹣∠E的度數(shù);
(3)如圖3,∠E=90°,AG,FG分別平分∠BAE,∠CFE,若GD∥FC,試探究∠AGF與∠GDC的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com