【題目】如圖,在中,的平分線相交于點(diǎn),過點(diǎn)于點(diǎn),交的延長線于點(diǎn)

1)求證:

2)當(dāng)時(shí),求的長.

【答案】(1)見解析;(2)3-

【解析】

1)利用等角的余角相等,證得∠EAG=D,利用AAS即可證明結(jié)論;

2)根據(jù)勾股定理求得BC的長,再利用(1)的結(jié)論即可求解.

1)∵BE,AE分別平分∠ABC,∠BAC的角平分線,

∴∠ABE=DBE,∠BAE=EAG,

DEAE,

∴∠AED=90°,

∴∠EAG+AGE=90°

∵∠ACB=90°

∴∠ACD=180°-ACB=90°,

∴∠CGD+D=90°,

∵∠EGA=CGD,

∴∠EAG=D,

∴∠BAE =D,

在△ABE和△DBE中,

,

∴△ABE≌△DBEAAS);

2)∵AB=3AC=2,∠ACB=90°,

BC2+AC2=AB2,得:,

∵△ABE≌△DBE,

AB=BD=3,

CD=BD-BC=3-

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某小區(qū)居民使用共享單車次數(shù)的情況,某研究小組隨機(jī)采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)統(tǒng)計(jì)如下:

使用次數(shù)

0

5

10

15

20

人數(shù)

1

1

4

3

1

1)這10位居民一周內(nèi)使用共享單車次數(shù)的中位數(shù)是 次,眾數(shù)是 次.

2)若小明同學(xué)把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是 .(填中位數(shù),眾數(shù)平均數(shù)

3)若該小區(qū)有2000名居民,試估計(jì)該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).

(1) 請(qǐng)畫出ABC向左平移5個(gè)單位長度后得到的ABC

(2) 請(qǐng)畫出ABC關(guān)于原點(diǎn)對(duì)稱的ABC;

(3) 在軸上求作一點(diǎn)P,使PAB的周長最小,請(qǐng)畫出PAB,并直接寫P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,CD3cm,BC4cm,連接BD,并過點(diǎn)CCNBD,垂足為N,直線l垂直BC,分別交BD、BC于點(diǎn)P、Q.直線lAB出發(fā),以每秒1cm的速度沿BC方向勻速運(yùn)動(dòng)到CD為止;點(diǎn)M沿線段DA以每秒1cm的速度由點(diǎn)D向點(diǎn)A勻速運(yùn)動(dòng),到點(diǎn)A為止,直線1與點(diǎn)M同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t0).

1)線段CN   

2)連接PMQN,當(dāng)四邊形MPQN為平行四邊形時(shí),求t的值;

3)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí)PMN的面積取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠制作兩種手工藝品,每天每件獲利比105元,獲利30元的與獲利240元的數(shù)量相等.

1)制作一件和一件分別獲利多少元?

2)工廠安排65人制作兩種手工藝品,每人每天制作21.現(xiàn)在在不增加工人的情況下,增加制作.已知每人每天可制作1(每人每天只能制作一種手工藝品),要求每天制作,兩種手工藝品的數(shù)量相等.設(shè)每天安排人制作,人制作,寫出之間的函數(shù)關(guān)系式.

3)在(1)(2)的條件下,每天制作不少于5件.當(dāng)每天制作5件時(shí),每件獲利不變.若每增加1件,則當(dāng)天平均每件獲利減少2元.已知每件獲利30元,求每天制作三種手工藝品可獲得的總利潤(元)的最大值及相應(yīng)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,內(nèi)接于分別是所對(duì)弧的中點(diǎn),弦分別交于點(diǎn),連結(jié)

1)求證:是等邊三角形.

2)若

①如圖2,當(dāng)的直徑時(shí),求的長.

②當(dāng)的面積分成了的兩部分時(shí),求的長.

3)連結(jié)于點(diǎn),若:則的值為_______ (請(qǐng)直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以點(diǎn)為旋轉(zhuǎn)中心,將線段按順時(shí)針方向旋轉(zhuǎn)得到線段,連結(jié)

1)比較的大小,并說明理由.

2)當(dāng)時(shí),若,請(qǐng)你編制一個(gè)計(jì)算題(不標(biāo)注新的字母),并解答

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在反比例函數(shù)y=(x>0)的圖像上,點(diǎn)B在反比例函數(shù)y=(x>0)的圖像上,AB∥x軸,BC⊥x軸,垂足為C,連接AC,若△ABC的面積是6,則k的值為(

A. 10 B. 12 C. 14 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲、乙、丙三人組成的籃球訓(xùn)練小組,他們?nèi)酥g進(jìn)行互相傳球練習(xí),籃球從一個(gè)人手中隨機(jī)傳到另外一個(gè)人手中計(jì)作傳球一次,共連續(xù)傳球三次.

1)若開始時(shí)籃球在甲手中,則經(jīng)過第一次傳球后,籃球落在丙的手中的概率是  ;

2)若開始時(shí)籃球在甲手中,求經(jīng)過連續(xù)三次傳球后,籃球傳到乙的手中的概率.(請(qǐng)用畫樹狀圖或列表等方法求解)

查看答案和解析>>

同步練習(xí)冊(cè)答案