【題目】某中學為了解全校學生到校上學的方式,在全校隨機抽取了若干名學生進行問卷調查.問卷給出了五種上學方式供學生選擇,每人只能選一項,且不能不選.同時把調查得到的結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).請根據(jù)圖中提供的信息解答下列問題:
(1)在這次調查中,一共抽取了多少名學生?
(2)通過計算補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“公交車”部分所對應的圓心角是多少度?
(4)若全校有1600名學生,估計該校乘坐私家車上學的學生約有多少名?
【答案】(1)80;(2)詳見解析;(3)117°;(4)200
【解析】
(1)上學方式為自行車的人數(shù)除以所占的百分比,即可得到調查的學生數(shù);(2)根據(jù)總人數(shù)乘以步行的百分比求出步行的人數(shù),補全條形統(tǒng)計圖即可;(3)求出“公交車”所占的百分比,乘以360度即可得到結果;(4)求出“私家車”上學的百分比,乘以總人數(shù)1600即可得到結果.
解:(1)∵24÷30%=80(名),
∴這次調查一共抽取了80名學生.
(2)80×20%=16(名),補全條形統(tǒng)計圖,如圖所示:
(3)根據(jù)題意得:360°×=117°,
∴在扇形統(tǒng)計圖中,“公交車”部分所對應的圓心角為117°.
(4)根據(jù)題意得:1600×=200(名),
∴估計該校乘坐私家車上學的學生約有200名.
科目:初中數(shù)學 來源: 題型:
【題目】隨著人們生活水平的提高,家用轎車越來越多地進入家庭.小明家中買了一輛小轎車,他連續(xù)記錄了7天中每天行駛的路程(如表),以50km為標準,多于50km的記為“+”,不足50km的記為“﹣”,剛好50km的記為“0”.
第一天 | 第二天 | 第三天 | 第四天 | 第五天 | 第六天 | 第七天 | |
路程(km) | ﹣8 | ﹣11 | ﹣14 | 0 | ﹣16 | +41 | +8 |
(1)請求出這七天平均每天行駛多少千米;
(2)若每行駛100km需用汽油6升,汽油價6.2元/升,請估計小明家一個月(按30天計)的汽油費用是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著“一帶一路”國際合作高峰論壇在北京舉行,中國同30多個國家簽署經貿合作協(xié)議,某廠準備生產甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū).已知甲種商品的銷售單價為900元,乙種商品的銷售單價為600元.
(1)已知乙種商品的銷售量不能低于甲種商品銷售量的三分之一,則最多能銷售甲種商品多少萬件?
(2)在(1)的條件下,要使甲、乙兩種商品的銷售總收入不低于5700萬元,請求甲種商品銷售量的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AD是BC邊上的中線,點E在AC上,∠CDE=25°,現(xiàn)將△CDE沿直線DE翻折得到△FDE,連接BF,則∠BFE的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】股民李明上星期六買進春蘭公司股票1000股,每股27元.下表為本周內每日該股票的漲跌情況(單位:元)(注:本周一股票漲跌是在上周六的基礎上,用正數(shù)記股價比前一日上升數(shù),用負數(shù)記股價比前一日下降數(shù))
星期 | 一 | 二 | 三 | 四 | 五 | 六 |
每股漲跌 | +4 | +4.5 | -1 | -2.5 | -6 | +2 |
(1)星期三收盤時,每股是多少元?
(2)本周內最高價是每股多少元?最低價每股多少元?
(3)己知李明買進股票時付了0.15%的手續(xù)費,賣出時需付成交額0.15%的手續(xù)費和0.1%的交易稅,如果李明在星期六收盤前將全部股票賣出,他的收益情況如何?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在△ABC中,AC=BC,∠ACB=90°,過點C作CD⊥AB于點D,點E是AB邊上一動點(不含端點A,B),連接CE,過點B作CE的垂線交直線CE于點F,交直線CD于點G.
(1)求證:AE=CG;
(2)若點E運動到線段BD上時(如圖②),試猜想AE,CG的數(shù)量關系是否發(fā)生變化,請寫出你的結論;
(3)過點A作AH⊥CE,垂足為點H,并交CD的延長線于點M(如圖③),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.求證:(1)△BDA≌△AEC;(2)DE=BD+CE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,點D為AB的中點.若點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.
(1)若點Q的運動速度與點P的運動速度相等,經過1秒后,△BPD與△CQP是否全等,請說明理由;
(2)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com