【題目】某中學為了解全校學生到校上學的方式,在全校隨機抽取了若干名學生進行問卷調查.問卷給出了五種上學方式供學生選擇,每人只能選一項,且不能不選.同時把調查得到的結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).請根據(jù)圖中提供的信息解答下列問題:

1)在這次調查中,一共抽取了多少名學生?

2)通過計算補全條形統(tǒng)計圖;

3)在扇形統(tǒng)計圖中,公交車部分所對應的圓心角是多少度?

4)若全校有1600名學生,估計該校乘坐私家車上學的學生約有多少名?

【答案】180;(2)詳見解析;(3117°;(4200

【解析】

1)上學方式為自行車的人數(shù)除以所占的百分比,即可得到調查的學生數(shù);(2)根據(jù)總人數(shù)乘以步行的百分比求出步行的人數(shù),補全條形統(tǒng)計圖即可;(3)求出公交車所占的百分比,乘以360度即可得到結果;(4)求出私家車上學的百分比,乘以總人數(shù)1600即可得到結果.

解:(1∵24÷30%=80(名),

這次調查一共抽取了80名學生.

280×20%=16(名),補全條形統(tǒng)計圖,如圖所示:

3)根據(jù)題意得:360°×=117°

在扇形統(tǒng)計圖中,公交車部分所對應的圓心角為117°

4)根據(jù)題意得:1600×=200(名),

估計該校乘坐私家車上學的學生約有200名.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著人們生活水平的提高,家用轎車越來越多地進入家庭.小明家中買了一輛小轎車,他連續(xù)記錄了7天中每天行駛的路程(如表),以50km為標準,多于50km的記為“+”,不足50km的記為“﹣”,剛好50km的記為“0”.

第一天

第二天

第三天

第四天

第五天

第六天

第七天

路程(km)

﹣8

﹣11

﹣14

0

﹣16

+41

+8

(1)請求出這七天平均每天行駛多少千米;

(2)若每行駛100km需用汽油6升,汽油價6.2元/升,請估計小明家一個月(按30天計)的汽油費用是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著一帶一路國際合作高峰論壇在北京舉行,中國同30多個國家簽署經貿合作協(xié)議,某廠準備生產甲、乙兩種商品共8萬件銷往一帶一路沿線國家和地區(qū).已知甲種商品的銷售單價為900元,乙種商品的銷售單價為600元.

1)已知乙種商品的銷售量不能低于甲種商品銷售量的三分之一,則最多能銷售甲種商品多少萬件?

2)在(1)的條件下,要使甲、乙兩種商品的銷售總收入不低于5700萬元,請求甲種商品銷售量的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,ADBC邊上的中線,點EAC上,∠CDE25°,現(xiàn)將△CDE沿直線DE翻折得到△FDE,連接BF,則∠BFE的度數(shù)是_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】股民李明上星期六買進春蘭公司股票1000股,每股27.下表為本周內每日該股票的漲跌情況(單位:元)(注:本周一股票漲跌是在上周六的基礎上,用正數(shù)記股價比前一日上升數(shù),用負數(shù)記股價比前一日下降數(shù))

星期

每股漲跌

+4

+4.5

-1

-2.5

-6

+2

1)星期三收盤時,每股是多少元?

2)本周內最高價是每股多少元?最低價每股多少元?

3)己知李明買進股票時付了0.15%的手續(xù)費,賣出時需付成交額0.15%的手續(xù)費和0.1%的交易稅,如果李明在星期六收盤前將全部股票賣出,他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在△ABC中,ACBCACB=90°,過點CCDAB于點D,點EAB邊上一動點(不含端點A,B),連接CE,過點BCE的垂線交直線CE于點F,交直線CD于點G.

(1)求證:AECG;

(2)若點E運動到線段BD上時(如圖②),試猜想AE,CG的數(shù)量關系是否發(fā)生變化,請寫出你的結論;

(3)過點AAHCE,垂足為點H,并交CD的延長線于點M(如圖③),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

先化簡,再求值: ,其中

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:在ABC中,∠BAC90°,ABAC,直線m經過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.求證:(1)BDA≌△AEC;(2)DEBDCE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,點DAB的中點.若點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.

(1)若點Q的運動速度與點P的運動速度相等,經過1秒后,△BPD△CQP是否全等,請說明理由;

(2)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD△CQP全等?

查看答案和解析>>

同步練習冊答案