【題目】有一塊形狀如圖的五邊形余料,,,,,.要在這塊余料中截取一塊矩形材料,其中一邊在上,并使所截矩形的面積盡可能大.
(1)若所截矩形材料的一條邊是或,求矩形材料的面積;
(2)能否截出比(1)中面積更大的矩形材料?如果能,求出這些矩形材料面積的最大值,如果不能,請說明理由.
【答案】(1)S=30;(2)能,的最大值為30.25.
【解析】
(1)①若所截矩形材料的一條邊是BC,過點C作CF⊥AE于F,得出S1=ABBC=6×5=30;
②若所截矩形材料的一條邊是AE,過點E作EF∥AB交CD于F,FG⊥AB于G,過點C作CH⊥FG于H,則四邊形AEFG為矩形,四邊形BCHG為矩形,證出△CHF為等腰三角形,得出AE=FG=6,HG=BC=5,BG=CH=FH,求出BG=CH=FH=FG-HG=1,AG=AB-BG=5,得出S2=AEAG=6×5=30;
(2)在CD上取點F,過點F作FM⊥AB于M,FN⊥AE于N,過點C作CG⊥FM于G,則四邊形ANFM為矩形,四邊形BCGM為矩形,證出△CGF為等腰三角形,得出MG=BC=5,BM=CG,FG=DG,設AM=x,則BM=6-x,FM=GM+FG=GM+CG=BC+BM=11-x,得出S=AM×FM=x(11-x)=-x2+11x,由二次函數的性質即可得出結果.
(1)①若所截矩形材料的一條邊是BC,如圖1所示:
過點C作CF⊥AE于F,S1=ABBC=6×5=30;
②若所截矩形材料的一條邊是AE,如圖2所示:
過點E作EF∥AB交CD于F,FG⊥AB于G,過點C作CH⊥FG于H,
則四邊形AEFG為矩形,四邊形BCHG為矩形,
∵∠C=135°,
∴∠FCH=45°,
∴△CHF為等腰直角三角形,
∴AE=FG=6,HG=BC=5,BG=CH=FH,
∴BG=CH=FH=FG-HG=6-5=1,
∴AG=AB-BG=6-1=5,
∴S2=AEAG=6×5=30;
(2)能;理由如下:
在CD上取點F,過點F作FM⊥AB于M,FN⊥AE于N,過點C作CG⊥FM于G,
則四邊形ANFM為矩形,四邊形BCGM為矩形,
∵∠C=135°,
∴∠FCG=45°,
∴△CGF為等腰直角三角形,
∴MG=BC=5,BM=CG,FG=DG,
設AM=x,則BM=6-x,
∴FM=GM+FG=GM+CG=BC+BM=11-x,
∴S=AM×FM=x(11-x)=-x2+11x=-(x-5.5)2+30.25,
∴當x=5.5時,S的最大值為30.25.
科目:初中數學 來源: 題型:
【題目】暑假期間,某景區(qū)商店推出銷售紀念品活動,已知紀念品每件的進貨價為30元,經市場調研發(fā)現(xiàn),當該紀念品的銷售單價為40元時,每天可銷售280件;當銷售單價每增加1元,每天的銷售數量將減少10件.(銷售利潤=銷售總額﹣進貨成本)
(1)若該紀念品的銷售單價為45元時,則當天銷售量為 件.
(2)當該紀念品的銷售單價為多少元時,該紀念品的當天銷售銷售利潤是2610元.
(3)當該紀念品的銷售單價定為多少元時,該紀念品的當天銷售銷售利潤達到最大值?求此最大利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線經過點,交y 軸于點C:
(1)求拋物線的頂點坐標.
(2)點為拋物線上一點,是否存在點使,若存在請直接給出點坐標;若不存在請說明理由.
(3)將直線繞點順時針旋轉,與拋物線交于另一點,求直線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A、B、C、D是⊙O上的四個點,AB=BC,BD交AC于點E,連接CD、AD.
(1)求證:DB平分∠ADC;
(2)若BE=3,ED=6,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,點D,E分別是AB,AC的中點,點G,F在BC邊上(均不與端點重合),DG∥EF.將△BDG繞點D順時針旋轉180°,將△CEF繞點E逆時針旋轉180°,拼成四邊形MGFN,則四邊形MGFN周長l的取值范圍是___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:正方形中,,繞點順時針旋轉,它的兩邊分別交(或它們的延長線)于點.
當繞點旋轉到時(如圖1),易證.
(1)當繞點旋轉到時(如圖2),線段和之間有怎樣的數量關系?寫出猜想,并加以證明.
(2)當繞點旋轉到如圖3的位置時,線段和之間又有怎樣的數量關系?請直接寫出你的猜想.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2+bx+3經過點A(3,0)和點B(4,3).
(1)求這條拋物線所對應的二次函數的表達式.
(2)直接寫出該拋物線開口方向和頂點坐標.
(3)直接在所給坐標平面內畫出這條拋物線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=4,tanB=2,以AB的中點D為圓心,r為半徑作⊙D,如果點B在⊙D內,點C在⊙D外,那么r可以。ā 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們不妨約定:對角線互相垂直的凸四邊形叫做“十字形”.
(1)在平行四邊形、矩形、菱形、正方形中,一定是“十字形”的有 .
(2)如圖1,在四邊形ABCD中,AB=AD,且CB=CD
①證明:四邊形ABCD是“十字形”;
②若AB=2.∠BAD=60°,∠BCD=90°,求四邊形ABCD的面積.
(3)如圖2.A、B、C、D是半徑為1的⊙O上按逆時針方向排列的四個動點,AC與BD交于點E,若∠ADB﹣∠CDB=∠ABD﹣∠CBD.滿足AC+BD=3,求線段OE的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com