【題目】已知:在△ABC中,AD是BC邊上的中線,點E是AD的中點;過點A作AF∥BC,交BE的延長線于F,連接CF.
(1)求證:四邊形ADCF是平行四邊形;
(2)填空: ①當AB=AC時,四邊形ADCF是形;
②當∠BAC=90°時,四邊形ADCF是形.
【答案】
(1)證明:∵AF∥BC,∴∠AFE=∠EBD.
在△AEF和△DEB中
∵ ,
∴△AEF≌△DEB(AAS).
∴AF=BD.
∴AF=DC.
又∵AF∥BC,
∴四邊形ADCF為平行四邊形;
(2)矩;菱
【解析】(2)①當AB=AC時,四邊形ADCF是矩形; ②當∠BAC=90°時,四邊形ADCF是菱形.
所以答案是矩形,菱形.
【考點精析】本題主要考查了等腰直角三角形和平行四邊形的判定與性質的相關知識點,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】某公司投資新建了一商場,共有商鋪30間.據預測,當每間的年租金定為10萬元時,可全部租出.每間的年租金每增加5000元,少租出商鋪1間.該公司要為租出的商鋪每間每年交各種費用1萬元,未租出的商鋪每間每年交各種費用5000元.
(1)當每間商鋪的年租金定為13萬元時,能租出多少間?
(2)當每間商鋪的年租金定為多少萬元時,該公司的年收益(收益=租金﹣各種費用)為275萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:AD與⊙O相切于點D,AF經過圓心與圓交于點E、F,連接DE、DF,且EF=6,AD=4.
(1)證明:AD2=AEAF;
(2)延長AD到點B,使DB=AD,直徑EF上有一動點C,連接CB交DF于點G,連接EG,設∠ACB=α,BG=x,EG=y. ①當α=900時,探索EG與BD的大小關系?并說明理由;
②當α=1200時,求y與x的關系式,并用x的代數式表示y.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:在Rt△ABC中,斜邊AB=10,sinA= ,點P為邊AB上一動點(不與A,B重合),PQ平分∠CPB交邊BC于點Q,QM⊥AB于M,QN⊥CP于N.
(1)當AP=CP時,求QP;
(2)若四邊形PMQN為菱形,求CQ;
(3)探究:AP為何值時,四邊形PMQN與△BPQ的面積相等?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀以下材料:
對數的創(chuàng)始人是蘇格蘭數學家納皮爾(J.Nplcr,1550﹣1617年),納皮爾發(fā)明對數是在指數書寫方式之前,直到18世紀瑞士數學家歐拉(Evlcr,1707﹣1783年)才發(fā)現(xiàn)指數與對數之間的聯(lián)系.
對數的定義:一般地,若ax=N(a>0,a≠1),那么x叫做以a為底N的對數,記作:x=logaN.比如指數式24=16可以轉化為4=log216,對數式2=log525可以轉化為52=25.
我們根據對數的定義可得到對數的一個性質:loga(MN)=logaM+logaN(a>0,a≠1,M>0,N>0);理由如下:
設logaM=m,logaN=n,則M=am,N=an
∴MN=aman=am+n,由對數的定義得m+n=loga(MN)
又∵m+n=logaM+logaN
∴loga(MN)=logaM+logaN
解決以下問題:
(1)將指數43=64轉化為對數式_____;
(2)證明loga=logaM﹣logaN(a>0,a≠1,M>0,N>0)
(3)拓展運用:計算log32+log36﹣log34=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,M、N分別是正方形ABCD的邊BC、CD上的點,已知:∠MAN=30°,AM=AN,△AMN的面積為1.
(1)求∠BAM的度數;
(2)求正方形ABCD的邊長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=BC,∠B=90°,點D為直線BC上的一個動點(不與B、C重合),連結AD,將線段AD繞點D按順時針方向旋轉90°,使點A旋轉到點E,連結EC.
(1)如果點D在線段BC上運動,如圖1:
①依題意補全圖1;
②求證:∠BAD=∠EDC;
③通過觀察、實驗,小明得出結論:在點D運動的過程中,總有∠DCE=135°,.
小明與同學討論后,形成了證明這個結論的幾種想法:
想法一:在AB上取一點F,使得BF=BD,要證∠DCE=135°,只需證△ADF≌△DEC.
想法二:以點D為圓心,DC為半徑畫弧交AC于點F,要證∠DCE=135°,只需證△AFD≌△DCE.
想法三:過點E作BC所在直線的垂直線段EF,要證∠DCE=135°,只需證EF=CF.
…
請你參考上面的想法,證明∠DCE=135°
(2)如果點D在線段CB的延長線上運動,利用圖2畫圖分析,∠DCE的度數還是確定的值嗎?如果是,直接寫出∠DCE的度數;如果不是,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c的圖象經過點(﹣1,0)、(5,0)、(0、﹣5).
(1)求此二次函數的解析式;
(2)當0≤x≤5時,求此函數的最小值與最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們學習了勾股定理后,都知道“勾三、股四、弦五”.
觀察:3、4、5;5、12、13;7、24、25;9、40、41;…,發(fā)現(xiàn)這些勾股數的勾都是奇數,且從3起就沒有間斷過.
(1)請你根據上述的規(guī)律寫出下一組勾股數:________.
(2)若第一個數用字母n(n為奇數,且n≥3)表示,那么后兩個數用含n的代數式分別表示為________和________,請用所學知識說明它們是一組勾股數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com