【題目】如圖,已知P為正方形ABCD外的一點,PA=1,PB=2,將△ABP繞點B順時針旋轉(zhuǎn)90°,使點P旋轉(zhuǎn)至點P′,且AP′=3,則∠BP′C的度數(shù)為 ( )
A.105° B.112.5° C.120° D.135°
【答案】D
【解析】
試題分析:連結(jié)PP′,如圖,先根據(jù)旋轉(zhuǎn)的性質(zhì)得BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,則可判斷△PBP′為等腰直角三角形,于是有∠BPP′=45°,PP′=PB=2,然后根據(jù)勾股定理的逆定理證明△APP′為直角三角形,得到∠APP′=90°,所以∠BPA=∠BPP′+∠APP′=135°,則∠BP′C=135°.
解:連結(jié)PP′,如圖,
∵四邊形ABCD為正方形,
∴∠ABC=90°,BA=BC,
∴△ABP繞點B順時針旋轉(zhuǎn)90°得到△CBP′,
∴BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,
∴△PBP′為等腰直角三角形,
∴∠BPP′=45°,PP′=PB=2,
在△APP′中,∵PA=1,PP′=2,AP′=3,
∴PA2+PP′2=AP′2,
∴△APP′為直角三角形,∠APP′=90°,
∴∠BPA=∠BPP′+∠APP′=45°+90°=135°,
∴∠BP′C=135°.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC,BD交于點O,已知O是BD的中點,BE=DF,AF∥CE.
(1)求證:四邊形AECF是平行四邊形;
(2)若OA=OD,則四邊形ABCD是什么特殊四邊形?請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知代數(shù)式6x-12與4+2x的值互為相反數(shù),那么x的值等于 ( )
A. -2 B. -1 C. 1 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的頂點O在坐標原點,邊OA在x軸上,OC在y軸上,如果矩形OA′B′C′與矩形OABC關(guān)于點O位似,且矩形OA′B′C′的面積等于矩形OABC面積的,那么點B′的坐標是( )
A.(﹣2,3) B.(2,﹣3)
C.(3,﹣2)或(﹣2,3) D.(﹣2,3)或(2,﹣3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過點P(-2,1),則這個函數(shù)的圖像位于( )
A.第一、第三象限
B.第二、第三象限
C.第二、第四象限
D.第三、第四象限
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com