【題目】(如圖(1),在矩形ABCD中,AB=4,BC=3,點(diǎn)E是射線CD上的一個(gè)動(dòng)點(diǎn),把△BCE沿BE折疊,點(diǎn)C的對應(yīng)點(diǎn)為F.

(1)若點(diǎn)F剛好落在線段AD的垂直平分線上時(shí),求線段CE的長;

(2)若點(diǎn)F剛好落在線段AB的垂直平分線上時(shí),求線段CE的長;

(3)當(dāng)射線AF交線段CD于點(diǎn)G時(shí),請直接寫出CG的最大值 .

【答案】(1)CE=;(2)CE=;(3)CG的最大值是4-

【解析】(1)根據(jù)垂直平分線的性質(zhì),等邊三角形的性質(zhì)求出即可;(2)利用垂直平分線的性質(zhì)得出FE=EC ,再利用相似三角形的性質(zhì)進(jìn)而得出答案;(3)當(dāng)射線AF交線段CD于點(diǎn)G時(shí)求出即可.

解: ∵點(diǎn)F剛好落在線段AD的垂直平分線上,∴FB=FC

∵折疊 ,∴FB=BC=3.

∴△FBC是等邊三角形,∴∠FBC=60°, ∠EBC=30°.

在Rt△EBC,∴CEBC

(2)如圖(1)∵點(diǎn)F剛好落在線段AB的垂直平分線MN上,

∵折疊,∴FE=EC

BM=2,在Rt△MFB中,MF=

∵△MBF∽△NFE,

CEEN

如圖(2)∵折疊 ,∴FE=EC

同理MF=,FN=3+

∵△MBF∽△NFE,

CEEN

(3)CG的最大值是4-

“點(diǎn)睛”此題主要考查了垂直平分線、等邊三角形、矩形的性質(zhì)、翻折變換的性質(zhì)、相似三角形等知識(shí);利用數(shù)形結(jié)合以及分類討論得出是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小敏家廚房一墻角處有一自來水管,裝修時(shí)為了美觀,準(zhǔn)備用木板從AB處將水管密封起來,互相垂直的兩墻面與水管分別相切于D,E兩點(diǎn),經(jīng)測量AD=10cm,BE=15cm, 則該自來水管的半徑為( )cm.

A.5
B.10
C.6
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算: ﹣4sin45°+( 0+22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,其中AC+BD=14,CD=5.

(1)若四邊形ABCD是平行四邊形,則OCD的周長為_____________;

(2) 若四邊形ABCD是矩形,則AD的長為_____________;

(3) 若四邊形ABCD是菱形,則菱形的面積為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】股民李星星在上周星期五以每股 11.2 元買了一批股票,下表為本周星期一 到星期五該股票的漲跌情況

求:(1)本周星期三收盤時(shí),每股的錢數(shù).

(2)李星星本周內(nèi)哪一天把股票拋出比較合算,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)給出的數(shù)軸及已知條件,解答下面的問題:

(1)已知點(diǎn)A,B,C表示的數(shù)分別為1,2.5,﹣3觀察數(shù)軸,B,C兩點(diǎn)之間的距離為   ;

與點(diǎn)A的距離為3的點(diǎn)表示的數(shù)是

(2)若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則與B點(diǎn)重合的點(diǎn)表示的數(shù)是   ;

若此數(shù)軸上M,N兩點(diǎn)之間的距離為2015(MN的左側(cè)),且當(dāng)A點(diǎn)與C點(diǎn)重合時(shí),M點(diǎn)與N點(diǎn)也恰好重合,則M,N兩點(diǎn)表示的數(shù)分別是:M:   ,N:   ;

(3)若數(shù)軸上P,Q兩點(diǎn)間的距離為m(PQ左側(cè)),表示數(shù)n的點(diǎn)到P,Q兩點(diǎn)的距離相等,則將數(shù)軸折疊,使得P點(diǎn)與Q點(diǎn)重合時(shí),P,Q兩點(diǎn)表示的數(shù)分別為:P:   ,Q:  (用含m,n的式子表示這兩個(gè)數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,點(diǎn)O是邊AC上的一個(gè)動(dòng)點(diǎn),過O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.

(1)求證:OE=OF.

(2)試確定點(diǎn)O在邊AC上的位置,使四邊形AECF是矩形,并加以證明.

(3)在(2)的條件下,且△ABC滿足 ____________時(shí),矩形AECF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中, E、FG、H分別是邊AB、BCCD、DA的中點(diǎn),若AC=BD,且EG2+FH2=16,則AC的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)45+(-22)+(-8)-(-5);(2)(-4)-(-5)+(-4)-3;

(3)÷; (4)-14+|3-5|-16÷(-2)×

查看答案和解析>>

同步練習(xí)冊答案