(8分).如圖在四邊形ABCD中,∠ABC=∠ADC=90°,M、N分別是AC、BD的中點(diǎn),猜一猜MN與BD的位置關(guān)系,再證明你的結(jié)論。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)在中,繞點(diǎn)順時(shí)針旋轉(zhuǎn)角于點(diǎn)分別交兩點(diǎn).
(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(2)如圖2,當(dāng)時(shí),試判斷四邊形的形狀,并說明理由;
(3)在(2)的情況下,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,有長方形ABCD紙片,將△BCD沿對角線折疊,記點(diǎn)C的對應(yīng)點(diǎn)為.若∠AD=20°,則∠BDC      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在梯形ABCD中,AD∥BC,若再加上一個(gè)條件___________,則可得梯形ABCD是等腰梯形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,等腰梯形ABCD下底與上底的差恰好等于腰長,DE∥AB,則DEC等于______
                

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知矩形ABCD,現(xiàn)將矩形沿對角線BD折疊,得到如圖所示的圖形,

(1)求證:△ABE≌△C’ DE
(2)若AB=6,AD=10,求S△ABE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(9分)如圖所示,在邊長為1的正方形ABCD中,一直角三角尺PQR的直角頂點(diǎn)P在對角線AC上移動,直角邊PQ經(jīng)過點(diǎn)D,另一直角邊與射線BC交于點(diǎn)E.
⑴試判斷PE與PD的大小關(guān)系,并證明你的結(jié)論;
⑵連接PB,試證明:△PBE為等腰三角形;
⑶設(shè)AP=x,△PBE的面積為y,
①求出y關(guān)于x 函數(shù)關(guān)系式;
②當(dāng)點(diǎn)P落在AC的何處時(shí),△PBE的面積最大,此時(shí)最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如果一條直線把一個(gè)平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個(gè)平面圖形的一條面積等分線.如,平行四邊形的一條對角線所在的直線就是平行四邊形的一條面積等分線.
(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的是_______;
(2)如圖1,梯形ABCD中,ABDC,如果延長DCE,使CEAB,連接AE,那么有S梯形ABCD SADE.請你給出這個(gè)結(jié)論成立的理由,并過點(diǎn)A作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);
(3)如圖2,四邊形ABCD中,ABCD不平行,SADCSABC,過點(diǎn)A能否作出四邊形ABCD的面積等分線?若能,請畫出面積等分線,并給出說明;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖12,在△ABC中,AC=BC,∠B=30°,DAC的中點(diǎn),E是線段BC延長線上一動點(diǎn),過點(diǎn)AAFBE,與線段ED的延長線交于點(diǎn)F,連結(jié)AE、CF.
(1)求證:AF=CE;
(2)若CE=BC,試判斷四邊形AFCE是什么樣的四邊形,并證明你的結(jié)論;
(3)若CE= BC,求證:EFAC.

查看答案和解析>>

同步練習(xí)冊答案