【題目】綜合題。
(1)化簡(jiǎn):5x+(2x+y)﹣(x﹣4y).
(2)先化簡(jiǎn),再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣

【答案】
(1)

解:原式=5x+2x+y﹣x+4y=6x+5y


(2)

解:原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,

當(dāng)x=﹣ 時(shí),原式=1+ +5=6


【解析】(1)原式去括號(hào)合并即可得到結(jié)果;(2)原式去括號(hào)合并得到最簡(jiǎn)結(jié)果,把x的值代入計(jì)算即可求出值.
【考點(diǎn)精析】本題主要考查了去括號(hào)法則和代數(shù)式求值的相關(guān)知識(shí)點(diǎn),需要掌握去括號(hào)、添括號(hào),關(guān)鍵要看連接號(hào).?dāng)U號(hào)前面是正號(hào),去添括號(hào)不變號(hào).括號(hào)前面是負(fù)號(hào),去添括號(hào)都變號(hào);求代數(shù)式的值,一般是先將代數(shù)式化簡(jiǎn),然后再將字母的取值代入;求代數(shù)式的值,有時(shí)求不出其字母的值,需要利用技巧,“整體”代入才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)三角形的第一條邊長(zhǎng)為a+2b,第二條邊比第一條邊短b-2,第三條邊比第二條邊短3.

(1)請(qǐng)用a、b的式子表示此三角形的周長(zhǎng);

(2)當(dāng)a=2,b=3時(shí),求此三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的個(gè)小球,其中紅球個(gè),黑球個(gè).

1)先從袋中取出個(gè)紅球,再?gòu)拇又须S機(jī)摸出個(gè)球,將摸出黑球記為事件,填空:若為必然事件,則m的值為 ,若為隨機(jī)事件,則m的值為

2)若從袋中隨機(jī)摸出個(gè)球,求摸出的球恰好是個(gè)紅球和個(gè)黑球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)把一件衣服按標(biāo)價(jià)的八折出售,仍可獲利20%。若衣服的進(jìn)價(jià)為100元,則標(biāo)價(jià)為( )

A. 145 B. 165 C. 180 D. 150

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)物體的俯視圖是圓,則該物體的形狀是( )

A. 球體B. 圓柱C. 圓錐D. 以上都有可能

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykxb的圖象與反比例函數(shù)y (x>0)的圖象交于點(diǎn)P(n,2),與x軸交于點(diǎn)A(-4,0),與y軸交于點(diǎn)C,PBx軸于點(diǎn)B,點(diǎn)A與點(diǎn)B關(guān)于y軸對(duì)稱.

(1)求一次函數(shù)、反比例函數(shù)的解析式;

(2)求證:點(diǎn)C為線段AP的中點(diǎn);

(3)反比例函數(shù)圖象上是否存在點(diǎn)D,使四邊形BCPD為菱形,如果存在,說明理由并求出點(diǎn)D的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校數(shù)學(xué)綜合實(shí)踐小組的同學(xué)以“綠色出行”為主題,把某小區(qū)的居民對(duì)共享單車的了解和使用情況進(jìn)行了問卷調(diào)查.在這次調(diào)查中,發(fā)現(xiàn)有20人對(duì)于共享單車不了解,使用共享單車的居民每天騎行路程不超過8千米,并將調(diào)查結(jié)果制作成統(tǒng)計(jì)圖,如下圖所示:

(1)本次調(diào)查人數(shù)共 人,使用過共享單車的有 人;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)如果這個(gè)小區(qū)大約有3000名居民,請(qǐng)估算出每天的騎行路程在2~4千米的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式 =1﹣ , = = ,將以這三個(gè)等式兩邊分別相加得: + + =1﹣ + + =1﹣ =
(1)猜想并寫出: =
(2)直接寫出下列各式的計(jì)算結(jié)果: + + +…+ =
(3)探究并計(jì)算: + + +…+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,
∴(m﹣n)2+(n﹣4)2=0,又∵(m﹣n)2≥0,(n﹣4)2≥0,
, ∴n=4,m=4.
請(qǐng)解答下面的問題:
(1)已知x2﹣2xy+2y2+6y+9=0,求xy﹣x2的值;
(2)已知△ABC的三邊長(zhǎng)a、b、c都是互不相等的正整數(shù),且滿足a2+b2﹣4a﹣18b+85=0,求△ABC的最大邊c的值;
(3)已知a2+b2=12,ab+c2﹣16c+70=0,求a+b+c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案